题目内容
16、已知集合A={x|-2<x<4},B={x|x+m<0}
(1)若A∩B=∅,求实数m的取值范围.
( 2 )若A?B,求实数m的取值范围.
(1)若A∩B=∅,求实数m的取值范围.
( 2 )若A?B,求实数m的取值范围.
分析:先化简集合B,然后利用题目提供的A,B的关系,结合数轴,即可得到关于m的不等式,从而解得m的取值范围.
解答:解:B={x|x+m<0}={x|x<-m}
(1)∵A∩B=∅,A={x|-2<x<4}∴-m≤-2∴m≥2
(2)∵A?B∴-m≥-4∴m≤4
(1)∵A∩B=∅,A={x|-2<x<4}∴-m≤-2∴m≥2
(2)∵A?B∴-m≥-4∴m≤4
点评:本题考查了集合的包含关系的应用,以及交集及其运算的问题,掌握好定义是解决问题的关键,是个基础题.
练习册系列答案
相关题目