题目内容
设{ak}为等差数列,公差为d,ak>0,k=1,2,…,2n+1.
(1)证明a>a2n-1•a2n+1;
(2)记bk=,试证lg b1+lg b2+…+lg bn>lg a2n+1-lg a1.
(1)证明a>a2n-1•a2n+1;
(2)记bk=,试证lg b1+lg b2+…+lg bn>lg a2n+1-lg a1.
分析:(1)欲证明:a>a2n-1•a2n+1先作差:a-a2n-1•a2n+1=[a1+(2n-1)d]2-[a1+(2n-2)d][a1+2nd]最后化简得到d2>0从而得到证明;
(2)由(1)知
>
,结合放缩法即可证得
>
,分别令n=1,2,…,n得到n个式子相乘即可证得结论.
(2)由(1)知
| ||
|
a2n+1 |
a2n-1 |
| ||
|
a2n+1 |
a2n-1 |
解答:解:(1)证明:a-a2n-1•a2n+1
=[a1+(2n-1)d]2-[a1+(2n-2)d][a1+2nd]
=a12+(4n-2)a1d+(2n-1)2d2-[a12+(4n-2)a1d+(4n2-4n)d2]
=d2>0 (d>0)
∴a2n2>a2n-1•a2n+1 …(5分)
(2)由(1)知
>
∴
>
>
>
…
>
…∴
>
∴(
)2•(
)2•(
)2•…•(
)2>(
)•(
)•(
)•…•
=
即 b12•b22•b32•…•bn2>
…(11分)
∴lgb1+lg b2+…+lg bn>
lga2n+1-
lga1 …(12分)
=[a1+(2n-1)d]2-[a1+(2n-2)d][a1+2nd]
=a12+(4n-2)a1d+(2n-1)2d2-[a12+(4n-2)a1d+(4n2-4n)d2]
=d2>0 (d>0)
∴a2n2>a2n-1•a2n+1 …(5分)
(2)由(1)知
| ||
|
a2n+1 |
a2n-1 |
∴
| ||
|
a3 |
a1 |
| ||
|
a5 |
a3 |
| ||
|
a7 |
a5 |
| ||
|
a2n+1 |
a2n-1 |
∴(
a2 |
a1 |
a4 |
a3 |
a6 |
a5 |
a2n |
a2n-1 |
a3 |
a1 |
a5 |
a3 |
a7 |
a5 |
a2n+1 |
a2n-1 |
a2n+1 |
a1 |
即 b12•b22•b32•…•bn2>
a2n-1 |
a1 |
∴lgb1+lg b2+…+lg bn>
1 |
2 |
1 |
2 |
点评:本小题主要考查等差数列、不等式的解法、数列与不等式的综合等基础知识,考查运算求解能力,考查化归与转化思想.属于中档题.
![](http://thumb.zyjl.cn/images/loading.gif)
练习册系列答案
相关题目