题目内容
已知函数f(x)=
,x∈(0,+∞),数列{an}满足a1=1,an+1=f(an);数列{bn}满足b1=
,bn+1=
,其中Sn为数列{bn}前n项和,n=1,2,3…
(1)求数列{an}和数列{bn}的通项公式;
(2)设Tn=
+
+…+
,证明Tn<5.
x |
2x+1 |
1 |
2 |
1 |
1-2f(Sn) |
(1)求数列{an}和数列{bn}的通项公式;
(2)设Tn=
1 |
a1b1 |
1 |
a2b2 |
1 |
anbn |
分析:(1)由f(x)=
,知an+1=f(an) =
,所以
=
-2,an=
(n∈N*).由bn+1=
,知bn+1=
=2Sn+1,由此能求出数列{an}和数列{bn}的通项公式.
(2)依题意Tn=2+
[3×1+5×
+7×(
)2+…+(2n-1)×(
)n-2],令An=3×1+5×
+7×(
)2+…+(2n-1)×(
)n-2,由错位相减法能求出An= 6-
×(
)n-2-
×(
)n-2,所以Tn=2+
[6-
×(
)n-2-
×(
)n-2]=5-
×(
)n-2-
×(
)n-2<5.
x |
2x+1 |
an |
2an+1 |
1 |
an+1 |
1 |
an |
1 |
2n-1 |
1 |
1-2f(Sn) |
1 | ||
1-
|
(2)依题意Tn=2+
1 |
2 |
1 |
3 |
1 |
3 |
1 |
3 |
1 |
3 |
1 |
3 |
1 |
3 |
3 |
2 |
1 |
3 |
2n-1 |
2 |
1 |
3 |
1 |
2 |
3 |
2 |
1 |
3 |
2n-1 |
2 |
1 |
3 |
3 |
4 |
1 |
3 |
2n-1 |
2 |
1 |
3 |
解答:解:(1)∵f(x)=
,∴an+1=f(an) =
,
∴
=
+2,
∴{
}是以
=1为首项,以2为公差的等差数列,
∴
=1+(n-1)×2,
∴an=
(n∈N*),又∵f(x)=
,bn+1=
,
∴bn+1=
=2Sn+1,
bn+2=2Sn+1+1,
∴bn+2-bn+1=2(Sn+1-Sn),
∴bn+2=3bn+1,∵b1=
,b2=2S1+1=2,
∴{bn}从第二项起成等比数列,公比为3,
∴bn=
.
(2)证明:依题意
Tn=2+
[3×1+5×
+7×(
)2+…+(2n-1)×(
)n-2],
令An=3×1+5×
+7×(
)2+…+(2n-1)×(
)n-2,①
An=3×
+5×(
)2+7×(
)3+…+(2n-1)×(
)n-1,②
①-②,得
An=3×1+2[
+(
)2+(
)3+…+(
)n-2]-(2n-1)•(
)n-1
=3+2×
-(2n-1)×(
)n-1
∴An= 6-
×(
)n-2-
×(
)n-2,
∴Tn=2+
[6-
×(
)n-2-
×(
)n-2]
=5-
×(
)n-2-
×(
)n-2<5.
即Tn<5.
x |
2x+1 |
an |
2an+1 |
∴
1 |
an+1 |
1 |
an |
∴{
1 |
an |
1 |
a1 |
∴
1 |
an |
∴an=
1 |
2n-1 |
x |
2x+1 |
1 |
1-2f(Sn) |
∴bn+1=
1 | ||
1-
|
bn+2=2Sn+1+1,
∴bn+2-bn+1=2(Sn+1-Sn),
∴bn+2=3bn+1,∵b1=
1 |
2 |
∴{bn}从第二项起成等比数列,公比为3,
∴bn=
|
(2)证明:依题意
Tn=2+
1 |
2 |
1 |
3 |
1 |
3 |
1 |
3 |
令An=3×1+5×
1 |
3 |
1 |
3 |
1 |
3 |
1 |
3 |
1 |
3 |
1 |
3 |
1 |
3 |
1 |
3 |
①-②,得
2 |
3 |
1 |
3 |
1 |
3 |
1 |
3 |
1 |
3 |
1 |
3 |
=3+2×
| ||||
1-
|
1 |
3 |
∴An= 6-
3 |
2 |
1 |
3 |
2n-1 |
2 |
1 |
3 |
∴Tn=2+
1 |
2 |
3 |
2 |
1 |
3 |
2n-1 |
2 |
1 |
3 |
=5-
3 |
4 |
1 |
3 |
2n-1 |
2 |
1 |
3 |
即Tn<5.
点评:本题考查数列与函数的综合,解题时要认真审题,仔细解答,注意错位相减法的合理运用.易错点是计算量大,在计算过程中容易出错.
练习册系列答案
相关题目