ÌâÄ¿ÄÚÈÝ
£¨20£©Éèf(x)ÊǶ¨ÒåÔÚ[0, 1]Éϵĺ¯Êý£¬Èô´æÔÚx*¡Ê(0£¬1)£¬Ê¹µÃf(x)ÔÚ[0, x*]Éϵ¥µ÷µÝÔö£¬ÔÚ[x*£¬1]Éϵ¥µ÷µÝ¼õ£¬Ôò³Æf(x)Ϊ[0, 1]Éϵĵ¥·åº¯Êý£¬x*Ϊ·åµã£¬°üº¬·åµãµÄÇø¼äΪº¬·åÇø¼ä£®¶ÔÈÎÒâµÄ[0£¬1]Éϵĵ¥·åº¯Êýf(x)£¬ÏÂÃæÑо¿Ëõ¶ÌÆ京·åÇø¼ä³¤¶ÈµÄ·½·¨£®
£¨I£©Ö¤Ã÷£º¶ÔÈÎÒâµÄx1£¬x2¡Ê(0£¬1)£¬x1£¼x2£¬Èôf(x1)¡Ýf(x2)£¬Ôò(0£¬x2)Ϊº¬·åÇø¼ä£»Èôf(x1)¡Üf(x2)£¬Ôò(x1£¬1)Ϊº¬·åÇø¼ä£»
£¨II£©¶Ô¸ø¶¨µÄr£¨0£¼r£¼0.5£©£¬Ö¤Ã÷£º´æÔÚx1£¬x2¡Ê(0£¬1)£¬Âú×ãx2£x1¡Ý2r£¬Ê¹µÃÓÉ£¨I£©ËùÈ·¶¨µÄº¬·åÇø¼äµÄ³¤¶È²»´óÓÚ 0.5£«r£»
£¨III£©Ñ¡È¡x1£¬x2¡Ê(0, 1)£¬x1£¼x2£¬ÓÉ£¨I£©¿ÉÈ·¶¨º¬·åÇø¼äΪ(0£¬x2)»ò(x1£¬1)£¬ÔÚËùµÃµÄº¬·åÇø¼äÄÚÑ¡È¡x3£¬ÓÉx3Óëx1»òx3Óëx2ÀàËƵؿÉÈ·¶¨Ò»¸öÐµĺ¬·åÇø¼ä£®ÔÚµÚÒ»´ÎÈ·¶¨µÄº¬·åÇø¼äΪ(0£¬x2)µÄÇé¿öÏ£¬ÊÔÈ·¶¨x1£¬x2£¬x3µÄÖµ£¬Âú×ãÁ½Á½Ö®²îµÄ¾ø¶ÔÖµ²»Ð¡ÓÚ0.02£¬ÇÒʹµÃÐµĺ¬·åÇø¼äµÄ³¤¶ÈËõ¶Ìµ½0.34.
£¨Çø¼ä³¤¶ÈµÈÓÚÇø¼äµÄÓҶ˵ãÓë×ó¶ËµãÖ®²î£©
£¨20£©£¨I£©Ö¤Ã÷£ºÉèx*Ϊf(x) µÄ·åµã£¬ÔòÓɵ¥·åº¯Êý¶¨Òå¿ÉÖª£¬f(x)ÔÚ[0, x*]Éϵ¥µ÷µÝÔö£¬ÔÚ[x*, 1]Éϵ¥µ÷µÝ¼õ£®
µ±f(x1)¡Ýf(x2)ʱ£¬¼ÙÉèx*(0, x2)£¬Ôòx1<x2¡Üx*£¬´Ó¶øf(x*)¡Ýf(x2)>f(x1)£¬
ÕâÓëf(x1)¡Ýf(x2)ì¶Ü£¬ËùÒÔx*¡Ê(0, x2)£¬¼´(0, x2)ÊǺ¬·åÇø¼ä.
µ±f(x1)¡Üf(x2)ʱ£¬¼ÙÉèx*( x1, 1)£¬Ôòx*¡Üx1<x2£¬´Ó¶øf(x*)¡Ýf(x1)>f(x2)£¬
ÕâÓëf(x1)¡Üf(x2)ì¶Ü£¬ËùÒÔx*¡Ê(x1, 1)£¬¼´(x1, 1)ÊǺ¬·åÇø¼ä.
£¨II£©Ö¤Ã÷£ºÓÉ£¨I£©µÄ½áÂÛ¿ÉÖª£º
µ±f(x1)¡Ýf(x2)ʱ£¬º¬·åÇø¼äµÄ³¤¶ÈΪl1£½x2£»
µ±f(x1)¡Üf(x2)ʱ£¬º¬·åÇø¼äµÄ³¤¶ÈΪl2=1£x1£»
¶ÔÓÚÉÏÊöÁ½ÖÖÇé¿ö£¬ÓÉÌâÒâµÃ
¢Ù
Óɢٵà 1£«x2£x1¡Ü1+2r£¬¼´x2£x1¡Ü2r.
ÓÖÒòΪx2£x1¡Ý2r£¬ËùÒÔ
x2£x1=2r, ¢Ú
½«¢Ú´úÈë¢ÙµÃ
x1¡Ü0.5£r, x2¡Ý0.5£«r£¬ ¢Û
Óɢٺ͢۽âµÃ x1£½0.5£r£¬ x2£½0.5£«r£®
ËùÒÔÕâʱº¬·åÇø¼äµÄ³¤¶Èl1£½l2£½0.5£«r£¬¼´´æÔÚx1£¬x2ʹµÃËùÈ·¶¨µÄº¬·åÇø¼äµÄ³¤¶È²»´óÓÚ0.5£«r£®
£¨III£©½â£º¶ÔÏÈÑ¡ÔñµÄx1£¬x2£¬x1<x2£¬ÓÉ£¨II£©¿ÉÖª
x1£«x2£½1£¬ ¢Ü
ÔÚµÚÒ»´ÎÈ·¶¨µÄº¬·åÇø¼äΪ(0, x2)µÄÇé¿öÏ£¬x3µÄÈ¡ÖµÓ¦Âú×ã
x3£«x1£½x2£¬ ¢Ý
ÓÉ¢ÜÓë¢Ý¿ÉµÃ,
µ±x1>x3ʱ£¬º¬·åÇø¼äµÄ³¤¶ÈΪx1£®
ÓÉÌõ¼þx1£x3¡Ý0.02£¬µÃx1£(1£2x1)¡Ý0.02£¬´Ó¶øx1¡Ý0.34£®
Òò´Ë£¬ÎªÁ˽«º¬·åÇø¼äµÄ³¤¶ÈËõ¶Ìµ½0.34£¬Ö»ÐèÈ¡x1£½0.34£¬x2£½0.66£¬x3=0.32£®