题目内容

(1)已知当时,不等式恒成立,求实数的取值范围
(2)解关于的不等式.

(1)x=3
(2)当时,解集为: ,当时,解集为: 
时,解集为:时,解集为: 当时,解集为:

解析试题分析:解:(1)原式可化为:  1分

为关于的一次函数,由题意:
  3分
解得:  6分
  8分
(2)原不等式可化为:  10分
那么由于a=0表示的为一次函数,a 为二次函数,那么分为两大类,结合开口方向和根的大小,和二次函数图形可知,需要整体分为a>0,a=0,a<0来求解,那么对于的大小将会影响到根的大小,所以要将a分为,以及来得到结论,那么可知有
时,原不等式的解集为:  12分
时,原不等式的解集为:  13分
时,原不等式的解集为: 14分
时,原不等式的解集为:  15分
时,原不等式的解集为:  16分
考点:二次不等式的解集
点评:主要是考查了含有参数的一元二次不等式的求解运用,属于中档题。体现了分类讨论思想的运用。

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网