题目内容
已知正项数列{an}满足:
-
=1,(n∈N+,n≥2),且a1=4.
(1)求{an}的通项公式;
(2)求证
+
+…+
<1(n∈N+)
an |
an-1 |
(1)求{an}的通项公式;
(2)求证
1 |
a1 |
1 |
a2 |
1 |
an |
分析:(1)由等差数列的定义可知数列{
}是等差数列,首项是2,公差为1,从而求出
的通项公式,即可求出{an}的通项公式;
(2)根据
=
<
=
-
,代入
+
+…+
可证得不等式.
an |
an |
(2)根据
1 |
ak |
1 |
(k+1)2 |
1 |
k(k+1) |
1 |
k |
1 |
k+1 |
1 |
a1 |
1 |
a2 |
1 |
an |
解答:解:(1)由题意可知数列{
}是等差数列,首项是2,公差为1;
∴
=2+(n-1)×1=n+1
∴an=(n+1)2
(2)证明:
=
<
=
-
∴
+
+…+
<1-
+
-
+…+
-
=1-
<1
an |
∴
an |
∴an=(n+1)2
(2)证明:
1 |
ak |
1 |
(k+1)2 |
1 |
k(k+1) |
1 |
k |
1 |
k+1 |
∴
1 |
a1 |
1 |
a2 |
1 |
an |
1 |
2 |
1 |
2 |
1 |
3 |
1 |
n |
1 |
n+1 |
1 |
n+1 |
点评:本题主要考查了等差数列的通项公式,以及利用放缩法和裂项求和法进行证明不等式,属于中档题.
练习册系列答案
相关题目