题目内容
过圆锥高的三等分点作平行于底面的截面,它们把圆锥侧面分成的三部分的面积之比为
1:3:5
1:3:5
.分析:先从得到的三个圆锥入手,根据“过圆锥的高的三等分点作平行于底面的截面”,结合相似比:可知底面半径之比:r1:r2:r3=1:2:3,母线长之比:l1:l2:l3=1:2:3,侧面积之比:S1:S2:S3=1:4:9,从而得到结论.
解答:解:由此可得到三个圆锥,
根据题意则有:
底面半径之比:r1:r2:r3=1:2:3,
母线长之比:l1:l2:l3=1:2:3,
侧面积之比:S1:S2:S3=1:4:9,
所以三部分侧面面积之比:S1:(S2-S1):(S3-S2)=1:3:5.
故答案为:1:3:5.
根据题意则有:
底面半径之比:r1:r2:r3=1:2:3,
母线长之比:l1:l2:l3=1:2:3,
侧面积之比:S1:S2:S3=1:4:9,
所以三部分侧面面积之比:S1:(S2-S1):(S3-S2)=1:3:5.
故答案为:1:3:5.
点评:本题主要考查圆锥的结构特征,特别考查了截面问题,三角形相似比,属中档题.
练习册系列答案
相关题目