题目内容
19.某校为了提倡素质教育,丰富学生们的课外活动分别成立绘画,象棋和篮球兴趣小组,现有甲,乙,丙、丁四名同学报名参加,每人仅参加一个兴趣小组,每个兴趣小组至少有一人报名,则不同的报名方法有( )A. | 12种 | B. | 24种 | C. | 36种 | D. | 72种 |
分析 根据题意,分2步进行分析:①在4个人中任取2人,作为一个整体,②将这个整体与其他3人进行全排列,对应3个活动小组,分别计算这2步的情况数目,由分步计数原理计算可得答案.
解答 解:根据题意,分析可得,4个人中有2个人分在同一个组,在4个人中任取2人,作为一个整体,有C42=6种情况,
将这个整体与其他3人进行全排列,对应3个活动小组,有A33=6种情况,
则共有6×6=36种不同的报名方法,
故选:C.
点评 本题考查分步计数原理的运用,关键是认真分析题意,确定计算的步骤.
练习册系列答案
相关题目
7.已知集合A={x∈Z|x2-x-2≤0},B={x∈Z|-5<2x+1≤3},则A∪B=( )
A. | {-1,0,1} | B. | {-3,-2,-1,0,1,2 } | C. | {-2,-1,0,1} | D. | {-2,-1,0,1,2} |
14.设集合A={-1,0,1,2,3},B={x|x2-2x>0},则A∩B=( )
A. | {3} | B. | {2,3} | C. | {-1,3} | D. | {0,1,2} |
8.已知二项式(a+$\frac{x}{b}$)7(其中$\frac{b}{a}$=$\frac{\sqrt{6}}{2}$)的展开式中x4的系数为70,则a等于( )
A. | $\frac{9}{2}$ | B. | $\frac{3}{2}$ | C. | $\frac{4}{9}$ | D. | $\frac{2}{9}$ |
9.如图,在△ABC中,如果O为BC边上中线AD上的点,且$\overrightarrow{OA}$+$\overrightarrow{OB}$+$\overrightarrow{OC}$=$\overrightarrow{0}$,那么( )
A. | $\overrightarrow{AO}$=$\overrightarrow{OD}$ | B. | $\overrightarrow{AO}$=2$\overrightarrow{OD}$ | C. | $\overrightarrow{AO}$=3$\overrightarrow{OD}$ | D. | $\overrightarrow{OD}$=2$\overrightarrow{AO}$ |