题目内容
设二次函数f(x)=ax2+bx+c(a>0),方程f(x)-x=0的两个根x1、x2满足0<x1<x2<。
(1)当x∈[0,x1时,证明x<f(x)<x1;
(2)设函数f(x)的图像关于直线x=x0对称,证明: x0<。
(1)证明略, (2)证明略
解析:
(1)令F(x)=f(x)-x,因为x1,x2是方程f(x)-x=0的根,所以F(x)=a(x-x1)(x-x2). 当x∈(0,x1)时,由于x1<x2,得(x-x1)(x-x2)>0,
又a>0,得F(x)=a(x-x1)(x-x2)>0,即x<f(x)
x1-f(x)=x1-[x+F(x)]=x1-x+a(x1-x)(x-x2)=(x1-x)[1+a(x-x2)]
∵0<x<x1<x2<,∴x1-x>0,1+a(x-x2)=1+ax-ax2>1-ax2>0
∴x1-f(x)>0,由此得f(x)<x1.
(2)依题意: x0=-,因为x1、x2是方程f(x)-x=0的两根,即x1,x2是方程ax2+(b-1)x+c=0的根.
∴x1+x2=-
∴x0=-,因为ax2<1,
∴x0<.
练习册系列答案
相关题目
设二次函数f(x)=x2+x+c(c>
)的图象与x轴的左右两个交点的横坐标分别为x1,x2,则x2-x1的取值范围为( )
1 |
8 |
A、(0,1) | ||||||
B、(0,
| ||||||
C、(
| ||||||
D、(
|