题目内容

已知函数,若直线对任意的都不是曲线的切线,则的取值范围是         

 

【答案】

【解析】

试题分析:首先分析对任意的m直线都不是曲线y=f(x)的切线的含义,即可求出函数的导函数,使直线与其不相交即可.解:,则f(x)=3x2-3a,若直线任意的m∈R都不是曲线y=f(x)的切线,则直线的斜率为-1,f(x)=3x2-3a与直线没有交点,又抛物线开口向上则必在直线上面,即最小值大于直线斜率,则当x=0时取最大值,-3a>-1,则a的取值范围为,故答案为

考点:函数与方程

点评:此题只要考查函数与方程的综合应用,以及函数导函数的计算,属于综合性问题,计算量小但有一定的难度,属于中等题

 

练习册系列答案
相关题目

 [番茄花园1] 本题共有3个小题,第1小题满分3分,第2小题满分5分,第3小题满分10分。

若实数满足,则称远离.

(1)若比1远离0,求的取值范围;

(2)对任意两个不相等的正数,证明:远离

(3)已知函数的定义域.任取等于中远离0的那个值.写出函数的解析式,并指出它的基本性质(结论不要求证明).

23本题共有3个小题,第1小题满分3分,第2小题满分6分,第3小题满分9分.

已知椭圆的方程为,点P的坐标为(-a,b).

(1)若直角坐标平面上的点M、A(0,-b),B(a,0)满足,求点的坐标;

(2)设直线交椭圆两点,交直线于点.若,证明:的中点;

(3)对于椭圆上的点Q(a cosθ,b sinθ)(0<θ<π),如果椭圆上存在不同的两个交点满足,写出求作点的步骤,并求出使存在的θ的取值范围.

 

 

 

 


 [番茄花园1]22.

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网