题目内容

在△ABC中,点O是其内一点,若
OA
+
OB
+
OC
=
0
,且
OA
OB
=
OB
OC
=
OC
OA
,则△ABC的形状是(  )
分析:设AB的中点为D,由
OA
+
OB
+
OC
=
0
,可得 O为△ABC的重心.由
OA
OB
=
OB
OC
=
OC
OA
,可得O为△ABC的垂心,由此可得,△ABC的形状.
解答:解:设AB的中点为D,∵
OA
+
OB
+
OC
=
0
,∴2
OD
=-
OC
,∴2|
OD
|=|
OC
|,
∴O为△ABC的重心.
OA
OB
=
OB
OC
=
OC
OA
,∴
OB
•(
OA
-
OC
)
=0,即
OB
CA
=0

OB
CA

 同理可证,
OA
CB
OC
BA
,故O为△ABC的垂心.
 综上可得,△ABC的形状是等边三角形,
 故选B.
点评:本题考查三角形的重心、垂心的定义,等边三角形的性质,判断O为△ABC的重心是解题的难点,属于中档题.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网