题目内容
在△ABC中,点O是其内一点,若
+
+
=
,且
•
=
•
=
•
,则△ABC的形状是( )
OA |
OB |
OC |
0 |
OA |
OB |
OB |
OC |
OC |
OA |
分析:设AB的中点为D,由
+
+
=
,可得 O为△ABC的重心.由
•
=
•
=
•
,可得O为△ABC的垂心,由此可得,△ABC的形状.
OA |
OB |
OC |
0 |
OA |
OB |
OB |
OC |
OC |
OA |
解答:解:设AB的中点为D,∵
+
+
=
,∴2
=-
,∴2|
|=|
|,
∴O为△ABC的重心.
∵
•
=
•
=
•
,∴
•(
-
)=0,即
•
=0,
∴
⊥
.
同理可证,
⊥
,
⊥
,故O为△ABC的垂心.
综上可得,△ABC的形状是等边三角形,
故选B.
OA |
OB |
OC |
0 |
OD |
OC |
OD |
OC |
∴O为△ABC的重心.
∵
OA |
OB |
OB |
OC |
OC |
OA |
OB |
OA |
OC |
OB |
CA |
∴
OB |
CA |
同理可证,
OA |
CB |
OC |
BA |
综上可得,△ABC的形状是等边三角形,
故选B.
点评:本题考查三角形的重心、垂心的定义,等边三角形的性质,判断O为△ABC的重心是解题的难点,属于中档题.
![](http://thumb.zyjl.cn/images/loading.gif)
练习册系列答案
相关题目