题目内容
(本题满分14分)
等比数列
中,
,
(1)求数列
的通项公式;
(2)若
分别是等差数列
的第3项和第5项,求数列
的通项公式及前n项和
.
等比数列
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823220101344474.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823220101469616.png)
(1)求数列
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823220101344474.png)
(2)若
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823220101516440.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823220101531498.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823220101531498.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823220101578388.png)
(1)![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823220101594452.png)
;(2)
.
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823220101594452.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823220101609238.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823220101640690.png)
第一问利用设数列
的公比为
, ∴
∴
=2, ∴ ![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823220101812655.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823220101609238.png)
第二问由(1)得
, ∴ ![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823220101890675.png)
设
的公差为d, ∴ ![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823220101937833.png)
∴
∴
得到和式。
解:设数列
的公比为
, ∴
·……………………3分
∴
=2, ∴ ![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823220101812655.png)
……………………7分
(2)由(1)得
, ∴ ![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823220101890675.png)
设
的公差为d, ∴
…………………10分
∴![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823220101952469.png)
∴
…………………12分
∴
×12=
……………14分
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823220101672486.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823220101687311.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823220101703707.png)
∴
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823220101687311.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823220101812655.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823220101609238.png)
第二问由(1)得
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823220101874673.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823220101890675.png)
设
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823220101906503.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823220101937833.png)
∴
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823220101952469.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823220101999698.png)
解:设数列
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823220101672486.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823220101687311.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823220101703707.png)
∴
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823220101687311.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823220101812655.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823220101609238.png)
(2)由(1)得
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823220101874673.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823220101890675.png)
设
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823220101906503.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823220101937833.png)
∴
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823220101952469.png)
∴
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823220101999698.png)
∴
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823220102639953.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823220102670601.png)
![](http://thumb.zyjl.cn/images/loading.gif)
练习册系列答案
相关题目