题目内容

已知{an}是等比数列,公比为q,设Sn=a1+a2Cn1+a3Cn2+…+an+1Cnn(其中n>2,n∈N+),且Sn1=Cn0+Cn1+Cn2+…+Cnn,如果
lim
n→∞
Sn
S
1
n
存在,求公比q的取值范围.
分析:根据等比数列的通项公式可表示出an,和Sn1,进而求得Sn,代入
lim
n→∞
Sn
S
n
1
中,根据|
1+q
2
|<1
1+q
2
=1
求得q的范围.
解答:解:由题意an=a1•qn-1,Sn1=2n
Sn=a1+a1qCn1+a1q2Cn2++a1qnCnn
=a1(1+qCn1+q2Cn2++qnCnn
=a1(1+q)n(q≠0)
Sn
S
1
n
=
a1(1+q)n
2n
=a1(
1+q
2
)n

如果
lim
n→∞
Sn
S
1
n
存在,则|
1+q
2
|<1
1+q
2
=1

∴-2<1+q<2或q=1,
则-3<q≤1且q≠0.
故答案为-3<q≤1且q≠0.
点评:本题主要考查等比数列的求和.属基础题.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网