题目内容
如果有穷数列a1,a2,a3,…,am(m为正整数)满足条件a1=am,a2=am-1,…,am=a1,即ai=am-i+1(i=1,2,…,m),我们称其为“对称数列”.例如,数列1,2,5,2,1与数列8,4,2,2,4,8都是“对称数列”.(1)设{bn}是7项的“对称数列”,其中b1,b2,b3,b4是等差数列,且b1=2,b4=11.依次写出{bn}的每一项;
(2)设{cn}是49项的“对称数列”,其中c25,c26,…,c49是首项为1,公比为2的等比数列,求{cn}各项的和S;
(3)设{dn}是100项的“对称数列”,其中d51,d52,…,d100是首项为2,公差为3的等差数列.求{dn}前n项的和Sn(n=1,2,…,100).
分析:(1)由b1,b2,b3,b4为等差数列,且b1=2,b4=11,先求b1,b2,b3,b4,然后由对称数列的特点可写出数列的各项.
(2)由c25,c26,…,c49是首项为1,公比为2的等比数列,先求出c25,c26,…,c49通项,结合对称数列的对应项相等的特点,可知前面的各项,结合等比数列的求和公式可求出数列的和
(3)由d51,d52,…,d100是首项为2,公差为3的等差数列,可求该数列d51,d52,…,d100的通项,由对称数列的特点,结合等差数列的特点,求数列的和
(2)由c25,c26,…,c49是首项为1,公比为2的等比数列,先求出c25,c26,…,c49通项,结合对称数列的对应项相等的特点,可知前面的各项,结合等比数列的求和公式可求出数列的和
(3)由d51,d52,…,d100是首项为2,公差为3的等差数列,可求该数列d51,d52,…,d100的通项,由对称数列的特点,结合等差数列的特点,求数列的和
解答:解:(1)设数列{bn}的公差为d,则b4=b1+3d=2+3d=11,解得d=3,
∴?数列{bn}为2,5,8,11,8,5,2.
(2)S=c1+c2+…+c49=2(c25+c26+…+c49)-c25=2(1+2+22+…+224)-1=2(225-1)-1=226-3=67108861.
(3)d51=2,?d100=2+3×(50-1)=149.
由题意得d1,d2,,d50是首项为149,公差为-3的等差数列.
当n≤50时,Sn=d1+d2+…+dn=149n+
(-3)=-
n2+
n.
当51≤n≤100时,Sn=d1+d2+…+dn=S50+(d51+d52+…+dn)
=3775+2•(n-50)+
×3=
n2-
n+7500
综上所述,Sn=
∴?数列{bn}为2,5,8,11,8,5,2.
(2)S=c1+c2+…+c49=2(c25+c26+…+c49)-c25=2(1+2+22+…+224)-1=2(225-1)-1=226-3=67108861.
(3)d51=2,?d100=2+3×(50-1)=149.
由题意得d1,d2,,d50是首项为149,公差为-3的等差数列.
当n≤50时,Sn=d1+d2+…+dn=149n+
n(n-1) |
2 |
3 |
2 |
301 |
2 |
当51≤n≤100时,Sn=d1+d2+…+dn=S50+(d51+d52+…+dn)
=3775+2•(n-50)+
(n-50)(n-51) |
2 |
3 |
2 |
299 |
2 |
综上所述,Sn=
|
点评:本题以新定义对称数列为切入点,运用的知识都是数列的基本知识:等差数列的通项及求和公式,等比数列的通项及求和公式,还体现了分类讨论在解题中的应用.
练习册系列答案
相关题目