题目内容
(2009•武汉模拟)设无穷数列{an}系:a1=1,2an+1-an=
(n≥1)
(1)求a2,a3
(2)若bn=an-
,求证数列{bn}是等比数列
(3)若Sn为数列{an}前n项的和,求Sn.
n-2 |
n(n+1)(n+2) |
(1)求a2,a3
(2)若bn=an-
1 |
n(n+1) |
(3)若Sn为数列{an}前n项的和,求Sn.
分析:(1)由a1=1,2an+1-an=
(n≥1),分别取n=1,2即可得出.
(2)由bn=an-
,代入递推式中化简即可证明数列{bn}是等比数列.
(3)由(2)可知:bn=(
)n,an=(
)n+
=(
)n+(
-
),利用等比数列的前n项和公式及其裂项求和即可得出.
n-2 |
n(n+1)(n+2) |
(2)由bn=an-
1 |
n(n+1) |
(3)由(2)可知:bn=(
1 |
2 |
1 |
2 |
1 |
n(n+1) |
1 |
2 |
1 |
n |
1 |
n+1 |
解答:解:(1)由a1=1,2an+1-an=
(n≥1),
∴2a2-a1=
,解得a2=
.
同理可得a3=
.
(2)由bn=an-
,代入递推式中可得:2(bn+1+
)-(bn+
)=
,
∴2bn+1-bn+
-
=
,
∴2bn+1=bn,且b1=a1-
=
.
∴数列{bn}是首项为
,公比为
的等比数列.
(3)由(2)可知:bn=(
)n,
∴an=(
)n+
=(
)n+(
-
)
∴数列{an}前n项和Sn=
+1-
=2-(
)n-
.
n-2 |
n(n+1)(n+2) |
∴2a2-a1=
-1 |
1×2×3 |
5 |
12 |
同理可得a3=
5 |
24 |
(2)由bn=an-
1 |
n(n+1) |
1 |
(n+1)(n+2) |
1 |
n(n+1) |
n-2 |
n(n+1)(n+2) |
∴2bn+1-bn+
2n |
n(n+1)(n+2) |
n+2 |
n(n+1)(n+2) |
n-2 |
n(n+1)(n+2) |
∴2bn+1=bn,且b1=a1-
1 |
2 |
1 |
2 |
∴数列{bn}是首项为
1 |
2 |
1 |
2 |
(3)由(2)可知:bn=(
1 |
2 |
∴an=(
1 |
2 |
1 |
n(n+1) |
1 |
2 |
1 |
n |
1 |
n+1 |
∴数列{an}前n项和Sn=
| ||||
1-
|
1 |
n+1 |
=2-(
1 |
2 |
1 |
n+1 |
点评:正确理解递推式的含义、等比数列的定义、通项公式及其前n项和公式是解题的关键.
练习册系列答案
相关题目