题目内容

(2009•武汉模拟)设无穷数列{an}系:a1=1,2an+1-an=
n-2
n(n+1)(n+2)
(n≥1)
(1)求a2,a3
(2)若bn=an-
1
n(n+1)
,求证数列{bn}是等比数列
(3)若Sn为数列{an}前n项的和,求Sn
分析:(1)由a1=1,2an+1-an=
n-2
n(n+1)(n+2)
(n≥1),分别取n=1,2即可得出.
(2)由bn=an-
1
n(n+1)
,代入递推式中化简即可证明数列{bn}是等比数列.
(3)由(2)可知:bn=(
1
2
)n
an=(
1
2
)n+
1
n(n+1)
=(
1
2
)n+(
1
n
-
1
n+1
)
,利用等比数列的前n项和公式及其裂项求和即可得出.
解答:解:(1)由a1=1,2an+1-an=
n-2
n(n+1)(n+2)
(n≥1),
2a2-a1=
-1
1×2×3
,解得a2=
5
12

同理可得a3=
5
24

(2)由bn=an-
1
n(n+1)
,代入递推式中可得:2(bn+1+
1
(n+1)(n+2)
)-(bn+
1
n(n+1)
)
=
n-2
n(n+1)(n+2)

2bn+1-bn+
2n
n(n+1)(n+2)
-
n+2
n(n+1)(n+2)
=
n-2
n(n+1)(n+2)

∴2bn+1=bn,且b1=a1-
1
2
=
1
2

∴数列{bn}是首项为
1
2
,公比为
1
2
的等比数列.
(3)由(2)可知:bn=(
1
2
)n

an=(
1
2
)n+
1
n(n+1)
=(
1
2
)n+(
1
n
-
1
n+1
)

∴数列{an}前n项和Sn=
1
2
×[1-(
1
2
)n]
1-
1
2
+1-
1
n+1

=2-(
1
2
)n-
1
n+1
点评:正确理解递推式的含义、等比数列的定义、通项公式及其前n项和公式是解题的关键.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网