题目内容
已知f(x)=4x+ax2-2 |
3 |
(Ⅰ)求实数a的值组成的集合A;
(Ⅱ)设关于x的方程f(x)=2x+
1 |
3 |
分析:(Ⅰ)直接求出函数的导函数,转化成不等式恒成立问题解决即可;
(Ⅱ)利用韦达定理先求出|x1-x2|,变为不等式恒成立问题,再构造函数利用函数的导数求最值即可解决.
(Ⅱ)利用韦达定理先求出|x1-x2|,变为不等式恒成立问题,再构造函数利用函数的导数求最值即可解决.
解答:解:(Ⅰ)f'(x)=4+2ax-2x2,∵f(x)在[-1,1]上是增函数,
∴f'(x)≥0对x∈[-1,1]恒成立,
即x2-ax-2≤0对x∈[-1,1]恒成立.①
设φ(x)=x2-ax-2,
①?
?-1≤a≤1,
∵对x∈[-1,1],只有当a=1时,f'(-1)=0以及当a=-1时,f'(1)=0
∴A={a|-1≤a≤1}.
(Ⅱ)由4x+ax2-
x3=2x+
x3,得x=0,或x2-ax-2=0,
∵△=a2+8>0
∴x1,x2是方程x2-ax-2=0的两非零实根,x1+x2=a,x1x2=-2,
从而|x1-x2|=
=
.
∵-1≤a≤1,∴|x1-x2|=
≤3.
要使不等式m2+tm+1≥|x1-x2|对任意a∈A及t∈[-1,1]恒成立,
当且仅当m2+tm+1≥3对任意t∈[-1,1]恒成立,
即m2+tm-2≥0对任意t∈[-1,1]恒成立.②
设g(t)=m2+tm-2=mt+(m2-2),
②?g(-1)=m2-m-2≥0且g(1)=m2+m-2≥0,
?m≥2或m≤-2.
所以,存在实数m,使不等式m2+tm+1≥|x1-x2|对任意a∈A及t∈[-1,1]恒成立,
其取值范围是{m|m≥2,或m≤-2}.
∴f'(x)≥0对x∈[-1,1]恒成立,
即x2-ax-2≤0对x∈[-1,1]恒成立.①
设φ(x)=x2-ax-2,
①?
|
∵对x∈[-1,1],只有当a=1时,f'(-1)=0以及当a=-1时,f'(1)=0
∴A={a|-1≤a≤1}.
(Ⅱ)由4x+ax2-
2 |
3 |
1 |
3 |
∵△=a2+8>0
∴x1,x2是方程x2-ax-2=0的两非零实根,x1+x2=a,x1x2=-2,
从而|x1-x2|=
(x1+x2)2-4x1x2 |
a2+8 |
∵-1≤a≤1,∴|x1-x2|=
a2+8 |
要使不等式m2+tm+1≥|x1-x2|对任意a∈A及t∈[-1,1]恒成立,
当且仅当m2+tm+1≥3对任意t∈[-1,1]恒成立,
即m2+tm-2≥0对任意t∈[-1,1]恒成立.②
设g(t)=m2+tm-2=mt+(m2-2),
②?g(-1)=m2-m-2≥0且g(1)=m2+m-2≥0,
?m≥2或m≤-2.
所以,存在实数m,使不等式m2+tm+1≥|x1-x2|对任意a∈A及t∈[-1,1]恒成立,
其取值范围是{m|m≥2,或m≤-2}.
点评:本题主要考查函数的单调性,导数的应用和不等式等有关知识,考查数形结合及分类讨论思想和灵活运用数学知识分析问题和解决问题的能力.
练习册系列答案
相关题目