题目内容
设向量![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131024183308915695525/SYS201310241833089156955026_ST/0.png)
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131024183308915695525/SYS201310241833089156955026_ST/1.png)
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131024183308915695525/SYS201310241833089156955026_ST/2.png)
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131024183308915695525/SYS201310241833089156955026_ST/3.png)
(1)求证:an=n+1(2).
(2)求bn的表达式.
(3)若cn=-an•bn,试问数列{cn}中,是否存在正整数k,使得对于任意的正整数n,都有cn≤ck成立?证明你的结论.(注:
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131024183308915695525/SYS201310241833089156955026_ST/4.png)
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131024183308915695525/SYS201310241833089156955026_ST/5.png)
【答案】分析:(1)对称轴
,所以y=x2+(n+4)x-2在[0,1]上为增函数,故可证;
(2)由数列{bn}满足的条件,再写一式,两式相减可求;
(3)设存在自然数k,使对n∈N,cn≤ck恒成立,易得当n<8时,cn+1>cn,当n=8时,cn+1=cn,当n>8时,cn+1<cn故得解.
解答:解:(1)证明:对称轴
,所以y=x2+(n+4)x-2在[0,1]上为增函数---(2分)
an=(-2)+(n+3)=n+1--(4分)
(2)解:由
,
得,(n-1)b1+(n-2)b2+…+bn-1=
两式相减,
得![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131024183308915695525/SYS201310241833089156955026_DA/4.png)
∴当n=1时,b1=S1=1
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131024183308915695525/SYS201310241833089156955026_DA/5.png)
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131024183308915695525/SYS201310241833089156955026_DA/6.png)
(3)由(1)与(2)得![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131024183308915695525/SYS201310241833089156955026_DA/7.png)
设存在自然数k,使对n∈N,cn≤ck恒成立
当n=1时,![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131024183308915695525/SYS201310241833089156955026_DA/8.png)
当n≥2时,
,
∴当n<8时,cn+1>cn
当n=8时,cn+1=cn,当n>8时,cn+1<cn
所以存在正整数k=9,使对任意正整数n,均有c1<c2<…<c8=c9>c10>c11>…
点评:本题考查数列的性质及其应用,难度较大,解题时要认真审题,仔细解答.
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131024183308915695525/SYS201310241833089156955026_DA/0.png)
(2)由数列{bn}满足的条件,再写一式,两式相减可求;
(3)设存在自然数k,使对n∈N,cn≤ck恒成立,易得当n<8时,cn+1>cn,当n=8时,cn+1=cn,当n>8时,cn+1<cn故得解.
解答:解:(1)证明:对称轴
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131024183308915695525/SYS201310241833089156955026_DA/1.png)
an=(-2)+(n+3)=n+1--(4分)
(2)解:由
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131024183308915695525/SYS201310241833089156955026_DA/2.png)
得,(n-1)b1+(n-2)b2+…+bn-1=
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131024183308915695525/SYS201310241833089156955026_DA/3.png)
得
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131024183308915695525/SYS201310241833089156955026_DA/4.png)
∴当n=1时,b1=S1=1
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131024183308915695525/SYS201310241833089156955026_DA/5.png)
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131024183308915695525/SYS201310241833089156955026_DA/6.png)
(3)由(1)与(2)得
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131024183308915695525/SYS201310241833089156955026_DA/7.png)
设存在自然数k,使对n∈N,cn≤ck恒成立
当n=1时,
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131024183308915695525/SYS201310241833089156955026_DA/8.png)
当n≥2时,
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131024183308915695525/SYS201310241833089156955026_DA/9.png)
∴当n<8时,cn+1>cn
当n=8时,cn+1=cn,当n>8时,cn+1<cn
所以存在正整数k=9,使对任意正整数n,均有c1<c2<…<c8=c9>c10>c11>…
点评:本题考查数列的性质及其应用,难度较大,解题时要认真审题,仔细解答.
![](http://thumb.zyjl.cn/images/loading.gif)
练习册系列答案
相关题目