题目内容

4.解方程组$\left\{\begin{array}{l}{{x}^{2}+{y}^{2}=52}\\{xy+x+y=34}\end{array}\right.$.

分析 令x+y=a,xy=b,可得x2+y2=(x+y)2-2xy=a2-2b,原方程组变为:$\left\{\begin{array}{l}{{a}^{2}-2b=52}\\{a+b=34}\end{array}\right.$.由a+b=34可得:b=34-a,代入a2-2b=52,解得a,b,再利用一元二次方程的根与系数的关系即可得出.

解答 解:令x+y=a,xy=b,
则x2+y2=(x+y)2-2xy=a2-2b,
∴原方程组变为:$\left\{\begin{array}{l}{{a}^{2}-2b=52}\\{a+b=34}\end{array}\right.$,
由a+b=34可得:b=34-a,
代入a2-2b=52,化为a2+2a-120=0,
解得a=10,或a=-12.
∴$\left\{\begin{array}{l}{a=10}\\{b=24}\end{array}\right.$,或$\left\{\begin{array}{l}{a=-12}\\{b=46}\end{array}\right.$.
∴$\left\{\begin{array}{l}{x+y=10}\\{xy=24}\end{array}\right.$,或$\left\{\begin{array}{l}{x+y=-12}\\{xy=46}\end{array}\right.$,
由此可把x,y分别看做以下一元二次方程的两个实数根:
t2-10t+24=0,t2+12t-46=0,
分别解得t=4,6;t=-6±$\sqrt{82}$.
∴原方程组的解为$\left\{\begin{array}{l}{x=4}\\{y=6}\end{array}\right.$,$\left\{\begin{array}{l}{x=6}\\{y=4}\end{array}\right.$,$\left\{\begin{array}{l}{x=-6+\sqrt{82}}\\{y=-6-\sqrt{82}}\end{array}\right.$,$\left\{\begin{array}{l}{x=-6-\sqrt{82}}\\{y=-6+\sqrt{82}}\end{array}\right.$.

点评 本题考查了一元二次方程的根与系数的关系、方程组的解法、换元法,考查了推理能力与计算能力,属于中档题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网