题目内容
18.已知曲线Γ:ρ=$\frac{{\frac{3}{2}}}{{1-\frac{1}{2}cosθ}}$,θ∈R与曲线C:$\left\{\begin{array}{l}x=\frac{1}{2}t\\ y=\frac{{\sqrt{3}}}{2}t\end{array}$,t∈R相交于A,B两点,又原点O(0,0),则|OA|•|OB|=$\frac{12}{5}$.分析 首先把曲线的极坐标方程转换为直角坐标方程,进一步把参数方程转化为直角坐标方程,建立方程组求出交点的坐标,最后利用两点间的距离公式求出结果.
解答 解:曲线Γ:ρ=$\frac{{\frac{3}{2}}}{{1-\frac{1}{2}cosθ}}$,θ∈R
转化成:$ρ-\frac{1}{2}ρcosθ=\frac{3}{2}$,
转化成直角坐标方程为:$\sqrt{{x}^{2}+{y}^{2}}=\frac{1}{2}x+\frac{3}{2}$,
整理得:3x2+4y2-6x-9=0,
曲线C:$\left\{\begin{array}{l}x=\frac{1}{2}t\\ y=\frac{{\sqrt{3}}}{2}t\end{array}$,t∈R转化为直角坐标方程为:y=$\sqrt{3}x$,
所以:$\left\{\begin{array}{l}3{x}^{2}+4{y}^{2}-6x-9=0\\ y=\sqrt{3}x\end{array}\right.$,
解得:$\left\{\begin{array}{l}x=1\\ y=\sqrt{3}\end{array}\right.$或$\left\{\begin{array}{l}x=-\frac{3}{5}\\ y=-\frac{3\sqrt{3}}{5}\end{array}\right.$
所以:|OA|=2,$\left|OB\right|=\frac{6}{5}$
则:|OA||OB|=$\frac{12}{5}$.
故答案为:$\frac{12}{5}$.
点评 本题考查的知识要点:极坐标方程的互化,参数方程与直角坐标方程的互化,解方程组问题的应用,两点间的距离公式的应用,主要考查学生的应用能力.
A. | $\frac{{4+3\sqrt{3}}}{10}$ | B. | $\frac{{4-3\sqrt{3}}}{10}$ | C. | $\frac{{3\sqrt{3}-4}}{10}$ | D. | $\frac{{-4-3\sqrt{3}}}{10}$ |
A. | $\frac{2}{3}$ | B. | $\frac{4}{3}$ | C. | $\frac{3}{2}$ | D. | $\frac{3}{4}$ |
A. | 4 | B. | 2 | C. | 1 | D. | $\frac{1}{2}$ |
A. | 96种 | B. | 144种 | C. | 240种 | D. | 300种 |