题目内容

已知f(x)=
x
+
1
x
+
x+
1
x
+1
g(x)=
x
+
1
x
-
x+
1
x
+1

(1)分别求f(x)、g(x)的定义域,并求f(x)•g(x)的值;(2)求f(x)的最小值并说明理由;
(3)若a=
x2+x+1
 , b=t
x
 , c=x+1
,是否存在满足下列条件的正数t,使得对于任意的正
数x,a、b、c都可以成为某个三角形三边的长?若存在,则求出t的取值范围;若不存在,请说明理由.
分析:(1)利用被开放数大于0可求函数的定义域,直接相乘化简即可;   
(2)先考虑
x
+
1
x
≥2
,再说明函数y=
x
+
1
x
y=
x+
1
x
+1
在(-∞,1]上均为减函数,在[1,+∞)上均为增函数,从未求出函数的最小值.
(3)利用构成三角形的条件,转化为恒成立问题利用(1)(2)的结论可确定.
解答:解:(1)f(x)、g(x)的定义域均为(0,+∞);…(2分)
   f(x)•g(x)=( 
x
+
1
x
 )2-( x+
1
x
+1 )=1
.…(4分)
(2)∵
x
+
1
x
≥2
,∴
x
+
1
x
 )2≥4⇒x+
1
x
≥2
.…(7分)
易知函数y=
x
+
1
x
y=
x+
1
x
+1
在(-∞,1]上均为减函数,在[1,+∞)上均为增函数,
f(x)min=f(1)=2+
3
.…(10分)
(3)∵a=
x2+x+1
<x+1=c
,…(11分)
∴若能构成三角形,只需
x2+x+1
+t
x
>x+1
x2+x+1
+(x+1)>t
x
t>
x
+
1
x
-
x+
1
x
+1
t<
x
+
1
x
+
x+
1
x
+1
恒成立.…(13分)
由(1)知,f(x)•g(x)=1⇒g(x)=
1
f(x)

f(x)≥2+
3
,∴g(x)=
1
f(x)
≤2-
3
,即t>2-
3
.…(15分)
由(2)知,f(x)≥2+
3
,∴t<2+
3
.…(17分)
综上,存在t∈( 2-
3
 , 2+
3
 )
,满足题设条件.…(18分)
点评:本题主要考查利用函数单调性求函数的最值,将是否存在性问题转化为恒成立问题时解题的关键.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网