题目内容
已知0<x<
<y<π且sin(x+y)=
(Ⅰ)若tg
=
,分别求cosx及cosy的值;
(Ⅱ)试比较siny与sin(x+y)的大小,并说明理由.
π |
2 |
5 |
13 |
(Ⅰ)若tg
x |
2 |
1 |
2 |
(Ⅱ)试比较siny与sin(x+y)的大小,并说明理由.
(Ⅰ)∵0<x<
<y<π,tan
=
,且0<
<
,
∴cos=
=
,sin
=
,
则cosx=2cos2
-1=
,sinx=
,
又sin(x+y)=
,
<x+y<
,
∴cos(x+y)=-
,
∴cosy=cos[(x+y)-x]
=cos(x+y)cosx+sin(x+y)sinx
=-
•
+
•
=-
;
(Ⅱ)∵0<x<
<y<π,
∴
<x+y<
,
<y<x+y<
,
又y=sinx在[
,
]上为减函数,
∴siny>sin(x+y).
π |
2 |
x |
2 |
1 |
2 |
x |
2 |
π |
4 |
∴cos=
x |
2 |
2 | ||
|
x |
2 |
1 | ||
|
则cosx=2cos2
x |
2 |
3 |
5 |
4 |
5 |
又sin(x+y)=
5 |
13 |
π |
2 |
3π |
2 |
∴cos(x+y)=-
12 |
13 |
∴cosy=cos[(x+y)-x]
=cos(x+y)cosx+sin(x+y)sinx
=-
12 |
13 |
3 |
5 |
5 |
13 |
4 |
5 |
16 |
65 |
(Ⅱ)∵0<x<
π |
2 |
∴
π |
2 |
3π |
2 |
π |
2 |
3π |
2 |
又y=sinx在[
π |
2 |
3π |
2 |
∴siny>sin(x+y).
练习册系列答案
相关题目