题目内容

2.已知F1,F2是椭圆和双曲线的公共焦点,P是它们的一个公共点,且∠F1PF2=$\frac{π}{3}$,椭圆的离心率为e1,双曲线的离心率e2,则$\frac{1}{e_1^2}+\frac{3}{e_2^2}$=4.

分析 如图所示,设椭圆与双曲线的标准方程分别为:$\frac{{x}^{2}}{{a}_{1}^{2}}+\frac{{y}^{2}}{{b}_{1}^{2}}=1$,$\frac{{x}^{2}}{{a}_{2}^{2}}-\frac{{y}^{2}}{{b}_{2}^{2}}=1$(ai,bi>0,a1>b1,i=1,2),${a}_{1}^{2}-{b}_{1}^{2}$=${a}_{2}^{2}+{b}_{2}^{2}$=c2,c>0.设|PF1|=m,|PF2|=n.可得m+n=2a1,n-m=2a2,由于∠F1PF2=$\frac{π}{3}$,在△PF1F2中,由余弦定理可得:(2c)2=${m}^{2}+{n}^{2}-2mncos\frac{π}{3}$,化简整理即可得出.

解答 解:如图所示,
设椭圆与双曲线的标准方程分别为:$\frac{{x}^{2}}{{a}_{1}^{2}}+\frac{{y}^{2}}{{b}_{1}^{2}}=1$,$\frac{{x}^{2}}{{a}_{2}^{2}}-\frac{{y}^{2}}{{b}_{2}^{2}}=1$(ai,bi>0,a1>b1,i=1,2),
${a}_{1}^{2}-{b}_{1}^{2}$=${a}_{2}^{2}+{b}_{2}^{2}$=c2,c>0.
设|PF1|=m,|PF2|=n.
则m+n=2a1,n-m=2a2
解得m=a1-a2,n=a1+a2
由∠F1PF2=$\frac{π}{3}$,在△PF1F2中,
由余弦定理可得:(2c)2=${m}^{2}+{n}^{2}-2mncos\frac{π}{3}$,
∴4c2=$({a}_{1}-{a}_{2})^{2}$+$({a}_{1}+{a}_{2})^{2}$-(a1-a2)(a1+a2),
化为$4{c}^{2}={a}_{1}^{2}$+$3{a}_{2}^{2}$,
化为$\frac{1}{e_1^2}+\frac{3}{e_2^2}$=4.
故答案为:4.

点评 本题考查了椭圆与双曲线的定义标准方程及其性质、余弦定理,考查了推理能力与计算能力,属于中档题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网