题目内容
已知椭圆+=1(a>b>0),点P(a,a)在椭圆上.
(1)求椭圆的离心率;
(2)设A为椭圆的左顶点,O为坐标原点,若点Q在椭圆上且满足|AQ|=|AO|,求直线OQ的斜率的值.
(1) (2) k=±
解析解:(1)∵点P(a,a)在椭圆上,
∴+=1整理得=.
∴e==
=
==
=.
(2)由题意可知,点A坐标为(-a,0),|AO|=a.
设直线OQ的斜率为k,
则其方程为y=kx,
设点Q坐标为(x0,y0).
则
消去y0,整理得=①
由|AQ|=|AO|得(x0+a)2+k2=a2.
整理得(1+k22ax0=0.
由于x0≠0,
得x0=-.②
把②代入①得=,
整理得(1+k2)2=4k2·+4.
由(1)知=,
故(1+k2)2=k2+4,
即5k4-22k2-15=0,
解得k2=5.
∴直线OQ的斜率k=±.
练习册系列答案
相关题目