题目内容
(文)(本小题满分12分)
已知函数在与时都取得极值
(1)求的值与函数的单调区间
(2)若对,不等式恒成立,求的取值范围。
【答案】
(1)函数的递增区间是与,递减区间是
(2)
【解析】解:(1)
由,得
,函数的单调区间如下表:
|
|
|
|||
|
|
|
|||
|
极大值 |
¯ |
极小值 |
|
所以函数的递增区间是与,递减区间是;………………8分
(2),当时,
为极大值,而,则为最大值,要使
恒成立,则只需要,得。………………12分
练习册系列答案
相关题目
(2009宁夏海南卷文)(本小题满分12分)
某工厂有工人1000名,其中250名工人参加过短期培训(称为A类工人),另外750名工人参加过长期培训(称为B类工人).现用分层抽样方法(按A类,B类分二层)从该工厂的工人中共抽查100名工人,调查他们的生产能力(生产能力指一天加工的零件数).
(Ⅰ)A类工人中和B类工人各抽查多少工人?w.w.w.k.s.5.u.c.o.m
(Ⅱ)从A类工人中抽查结果和从B类工人中的抽查结果分别如下表1和表2
表1:
生产能力分组 | |||||
人数 | 4 | 8 | 5 | 3 |
表2:
生产能力分组 | ||||
人数 | 6 | y | 36 | 18 |
先确定,再在答题纸上完成下列频率分布直方图。就生产能力而言,A类工人中个体间的差异程度与B类工人中个体间的差异程度哪个更小?(不用计算,可通过观察直方图直接回答结论)
(ii)分别估计类工人和类工人生产能力的平均数,并估计该工厂工人和生产能力的平均数(同一组中的数据用该区间的中点值作代表)。