题目内容
求下列各函数的导数:
(1)y=(x+1)(x+2)(x+3).
(2)y=+
.
(3)y=e-xsin2x.
(1) y'=3x2+12x+11 (2) y'=. (3) y' =e-x(2cos2x-sin2x).
【解析】(1)方法一:y=(x2+3x+2)(x+3)=x3+6x2+11x+6,∴y'=3x2+12x+11.
方法二:y'=[(x+1)(x+2)]'(x+3)+(x+1)(x+2)·(x+3)'
=[(x+1)'(x+2)+(x+1)(x+2)'](x+3)+(x+1)·(x+2)
=(x+2+x+1)(x+3)+(x+1)(x+2)
=(2x+3)(x+3)+(x+1)(x+2)
=3x2+12x+11.
(2)∵y=+
=
,
∴y'=()'=
=
.
(3)y'=(-e-x)sin2x+e-x(cos2x)×2
=e-x(2cos2x-sin2x).

练习册系列答案
相关题目