ÌâÄ¿ÄÚÈÝ
±¾ÌâÉèÓУ¨1£©£¨2£©£¨3£©Èý¸öÑ¡¿¼Ì⣬ÿÌâ7·Ö£¬Ç뿼ÉúÈÎÑ¡2Ìâ×÷´ð£¬Âú·Ö14·Ö¡£Èç¹û¶à×ö£¬Ôò°´Ëù×öµÄÇ°Á½Ìâ¼Ç·Ö¡£×÷´ðʱ£¬ÏÈÓÃ2BǦ±ÊÔÚ´ðÌ⿨ÉÏ°ÑËùÑ¡ÌâÄ¿¶ÔÓ¦µÄÌâºÅÍ¿ºÚ£¬²¢½«ËùÑ¡ÌâºÅÌîÈëÀ¨ºÅÖС£
£¨1£©£¨±¾Ð¡ÌâÂú·Ö7·Ö£©Ñ¡ÐÞ4-2£º¾ØÕóÓë±ä»»
ÒÑÖª¾ØÕóM=£¬N=£¬ÇÒMN=¡£
£¨¢ñ£©ÇóʵÊýa,b,c,dµÄÖµ£»£¨¢ò£©ÇóÖ±Ïßy=3xÔÚ¾ØÕóMËù¶ÔÓ¦µÄÏßÐԱ任×÷ÓÃϵÄÏñµÄ·½³Ì¡£
£¨2£©£¨±¾Ð¡ÌâÂú·Ö7·Ö£©Ñ¡ÐÞ4-4£º×ø±êϵÓë²ÎÊý·½³Ì
ÔÚÖ±½Ç×ø±êϵxOyÖУ¬Ö±ÏßLµÄ²ÎÊý·½³ÌΪ £¨tΪ²ÎÊý£©£¬ÔÚ¼«×ø±êϵ£¨ÓëÖ±½Ç×ø±êϵxOyÈ¡ÏàͬµÄ³¤¶Èµ¥Î»£¬ÇÒÒÔÔµãOΪ¼«µã£¬ÒÔxÖáÕý°ëÖáΪ¼«ÖᣩÖУ¬Ô²CµÄ·½³ÌΪ=2sin¡£
£¨¢ñ£©ÇóÔ²CµÄÖ±½Ç×ø±ê·½³Ì£»
£¨¢ò£©ÉèÔ²CÓëÖ±ÏßL½»ÓÚµãA,B¡£ÈôµãPµÄ×ø±êΪ£¨3£¬£©£¬Çó¨OPA¨O+¨OPB¨O¡£
£¨3£©£¨±¾Ð¡ÌâÂú·Ö7·Ö£©Ñ¡ÐÞ4-5£º²»µÈʽѡ½²
ÒÑÖªº¯Êýf(x)= ¨Ox-a¨O.
£¨¢ñ£©Èô²»µÈʽf(x) 3µÄ½â¼¯Îª£¬ÇóʵÊýaµÄÖµ£»
£¨¢ò£©ÔÚ£¨¢ñ£©µÄÌõ¼þÏ£¬Èôf(x)+f(x+5)¡Ým¶ÔÒ»ÇÐʵÊýxºã³ÉÁ¢£¬ÇóʵÊýmµÄÈ¡Öµ·¶Î§¡£
£¨1£©£¨±¾Ð¡ÌâÂú·Ö7·Ö£©Ñ¡ÐÞ4-2£º¾ØÕóÓë±ä»»
ÒÑÖª¾ØÕóM=£¬N=£¬ÇÒMN=¡£
£¨¢ñ£©ÇóʵÊýa,b,c,dµÄÖµ£»£¨¢ò£©ÇóÖ±Ïßy=3xÔÚ¾ØÕóMËù¶ÔÓ¦µÄÏßÐԱ任×÷ÓÃϵÄÏñµÄ·½³Ì¡£
£¨2£©£¨±¾Ð¡ÌâÂú·Ö7·Ö£©Ñ¡ÐÞ4-4£º×ø±êϵÓë²ÎÊý·½³Ì
ÔÚÖ±½Ç×ø±êϵxOyÖУ¬Ö±ÏßLµÄ²ÎÊý·½³ÌΪ £¨tΪ²ÎÊý£©£¬ÔÚ¼«×ø±êϵ£¨ÓëÖ±½Ç×ø±êϵxOyÈ¡ÏàͬµÄ³¤¶Èµ¥Î»£¬ÇÒÒÔÔµãOΪ¼«µã£¬ÒÔxÖáÕý°ëÖáΪ¼«ÖᣩÖУ¬Ô²CµÄ·½³ÌΪ=2sin¡£
£¨¢ñ£©ÇóÔ²CµÄÖ±½Ç×ø±ê·½³Ì£»
£¨¢ò£©ÉèÔ²CÓëÖ±ÏßL½»ÓÚµãA,B¡£ÈôµãPµÄ×ø±êΪ£¨3£¬£©£¬Çó¨OPA¨O+¨OPB¨O¡£
£¨3£©£¨±¾Ð¡ÌâÂú·Ö7·Ö£©Ñ¡ÐÞ4-5£º²»µÈʽѡ½²
ÒÑÖªº¯Êýf(x)= ¨Ox-a¨O.
£¨¢ñ£©Èô²»µÈʽf(x) 3µÄ½â¼¯Îª£¬ÇóʵÊýaµÄÖµ£»
£¨¢ò£©ÔÚ£¨¢ñ£©µÄÌõ¼þÏ£¬Èôf(x)+f(x+5)¡Ým¶ÔÒ»ÇÐʵÊýxºã³ÉÁ¢£¬ÇóʵÊýmµÄÈ¡Öµ·¶Î§¡£
£¨1£©Ñ¡ÐÞ4-2£º¾ØÕóÓë±ä»»
±¾Ð¡ÌâÖ÷Òª¿¼²é¾ØÕóÓë±ä»»µÈ»ù´¡ÖªÊ¶£¬¿¼²éÔËËãÇó½âÄÜÁ¦¡£Âú·Ö7·Ö¡£
½â·¨Ò»£º
£¨¢ñ£©ÓÉÌâÉèµÃ£º
£¨¢ò£©ÒòΪ¾ØÕóMΪ¶ÔÓ¦µÄÏßÐԱ任½«Ö±Ïß±ä³ÉÖ±Ïߣ¨»òµã£©£¬ËùÒÔ¿ÉÈ¡Ö±Ïßy=3xÉϵÄÁ½µã£¨0£¬0£©£¬£¨1£¬3£©£¬
ÓÉ
µã£¨0£¬0£©£¬£¨1£¬3£©ÔÚ¾ØÕóMËù¶ÔÓ¦µÄÏßÐԱ任×÷ÓÃϵÄÏñÊǵ㣨0£¬0£©£¬£¨-2£¬2£©.
´Ó¶ø£¬Ö±Ïßy=3xÔÚ¾ØÕóMËù¶ÔÓ¦µÄÏßÐԱ任×÷ÓÃϵÄÏñµÄ·½³ÌΪy=-x¡£
½â·¨¶þ£º
£¨¢ñ£©Í¬½â·¨Ò»¡£
£¨¢ò£©ÉèÖ±Ïßy=3xÉϵÄÈÎÒâµã£¨x,y£©ÔÚ¾ØÕóMËù¶ÔÓ¦µÄÏßÐԱ任×÷ÓÃϵÄÏñÊǵ㣨x¡¯,y¡¯£©£¬ÓÉ
ÓÉ£¨x,y£©µÄÈÎÒâÐÔ¿ÉÖª£¬Ö±Ïßy=3xÔÚ¾ØÕóMËù¶ÔÓ¦µÄÏßÐԱ任×÷ÓÃϵÄÏñµÄ·½³ÌΪy= -x¡£
£¨2£©Ñ¡ÐÞ4-4£º×ø±êϵÓë²ÎÊý·½³Ì
±¾Ð¡ÌâÖ÷Òª¿¼²éÖ±ÏߵIJÎÊý·½³Ì¡¢Ô²µÄ¼«×ø±ê·½³Ì¡¢Ö±ÏßÓëÔ²µÄλÖùØϵµÈ»ù´¡ÖªÊ¶£¬¿¼²éÔËËãÇó½âÄÜÁ¦¡£Âú·Ö7·Ö¡£
½â·¨Ò»£º
¹ÊÓÉÉÏʽ¼°tµÄ¼¸ºÎÒâÒåµÃ
½â·¨¶þ£º
£¨¢ñ£©Í¬½â·¨Ò»¡£
£¨¢ò£©ÒòΪԲCµÄÔ²ÐÄΪ£¨0£¬£©£¬°ë¾¶r=,Ö±ÏßlµÄÆÕͨ·½³ÌΪ£ºy=-x+3+.
ÓɽâµÃ£º»ò
²»·ÁÉèA£¨1£¬2+£© £¬B£¨2£¬1+£©£¬ÓÖµãPµÄ×ø±êΪ£¨3£¬£©£¬
ÓÖÒÑÖª²»µÈʽf(x) 3µÄ½â¼¯Îª£¬ËùÒÔ½âµÃa=2.
£¨¢ò£©µ±a=2ʱ£¬f(x)=¨Ox-2¨O.Éèg(x)=f(x)+f(x+5)£¬ÓÚÊÇ
×ÛÉϿɵã¬g(x)µÄ×îСֵΪ5.
´Ó¶ø£¬Èôf(x)+f(x+5)¡Ým¼´g(x) ¡Ým ¶ÔÒ»ÇÐʵÊýx ºã³ÉÁ¢£¬ÔòmµÄÈ¡Öµ·¶Î§Îª(-£¬5].
½â·¨¶þ£º
£¨¢ñ£©Í¬½â·¨Ò»¡£
£¨¢ò£©µ±a=2ʱ£¬f(x)=¨Ox-2¨O.Éèg(x)=f(x)+f(x+5).
ÓɨOx-2¨O+¨Ox+3¨O¡Ý¨O(x-2)-(x+3)¨O="5" £¨µ±ÇÒ½öµ±-3x2ʱµÈºÅ³ÉÁ¢£©µÃ£¬g(x)µÄ×îСֵΪ5.
´Ó¶ø£¬Èôf(x)+f(x+5) ¡Ým ¼´ g(x) ¡Ým¶ÔÒ»ÇÐʵÊýxºã³ÉÁ¢£¬ÔòmµÄÈ¡Öµ·¶Î§Îª(-£¬5].
±¾Ð¡ÌâÖ÷Òª¿¼²é¾ØÕóÓë±ä»»µÈ»ù´¡ÖªÊ¶£¬¿¼²éÔËËãÇó½âÄÜÁ¦¡£Âú·Ö7·Ö¡£
½â·¨Ò»£º
£¨¢ñ£©ÓÉÌâÉèµÃ£º
£¨¢ò£©ÒòΪ¾ØÕóMΪ¶ÔÓ¦µÄÏßÐԱ任½«Ö±Ïß±ä³ÉÖ±Ïߣ¨»òµã£©£¬ËùÒÔ¿ÉÈ¡Ö±Ïßy=3xÉϵÄÁ½µã£¨0£¬0£©£¬£¨1£¬3£©£¬
ÓÉ
µã£¨0£¬0£©£¬£¨1£¬3£©ÔÚ¾ØÕóMËù¶ÔÓ¦µÄÏßÐԱ任×÷ÓÃϵÄÏñÊǵ㣨0£¬0£©£¬£¨-2£¬2£©.
´Ó¶ø£¬Ö±Ïßy=3xÔÚ¾ØÕóMËù¶ÔÓ¦µÄÏßÐԱ任×÷ÓÃϵÄÏñµÄ·½³ÌΪy=-x¡£
½â·¨¶þ£º
£¨¢ñ£©Í¬½â·¨Ò»¡£
£¨¢ò£©ÉèÖ±Ïßy=3xÉϵÄÈÎÒâµã£¨x,y£©ÔÚ¾ØÕóMËù¶ÔÓ¦µÄÏßÐԱ任×÷ÓÃϵÄÏñÊǵ㣨x¡¯,y¡¯£©£¬ÓÉ
ÓÉ£¨x,y£©µÄÈÎÒâÐÔ¿ÉÖª£¬Ö±Ïßy=3xÔÚ¾ØÕóMËù¶ÔÓ¦µÄÏßÐԱ任×÷ÓÃϵÄÏñµÄ·½³ÌΪy= -x¡£
£¨2£©Ñ¡ÐÞ4-4£º×ø±êϵÓë²ÎÊý·½³Ì
±¾Ð¡ÌâÖ÷Òª¿¼²éÖ±ÏߵIJÎÊý·½³Ì¡¢Ô²µÄ¼«×ø±ê·½³Ì¡¢Ö±ÏßÓëÔ²µÄλÖùØϵµÈ»ù´¡ÖªÊ¶£¬¿¼²éÔËËãÇó½âÄÜÁ¦¡£Âú·Ö7·Ö¡£
½â·¨Ò»£º
¹ÊÓÉÉÏʽ¼°tµÄ¼¸ºÎÒâÒåµÃ
½â·¨¶þ£º
£¨¢ñ£©Í¬½â·¨Ò»¡£
£¨¢ò£©ÒòΪԲCµÄÔ²ÐÄΪ£¨0£¬£©£¬°ë¾¶r=,Ö±ÏßlµÄÆÕͨ·½³ÌΪ£ºy=-x+3+.
ÓɽâµÃ£º»ò
²»·ÁÉèA£¨1£¬2+£© £¬B£¨2£¬1+£©£¬ÓÖµãPµÄ×ø±êΪ£¨3£¬£©£¬
ÓÖÒÑÖª²»µÈʽf(x) 3µÄ½â¼¯Îª£¬ËùÒÔ½âµÃa=2.
£¨¢ò£©µ±a=2ʱ£¬f(x)=¨Ox-2¨O.Éèg(x)=f(x)+f(x+5)£¬ÓÚÊÇ
×ÛÉϿɵã¬g(x)µÄ×îСֵΪ5.
´Ó¶ø£¬Èôf(x)+f(x+5)¡Ým¼´g(x) ¡Ým ¶ÔÒ»ÇÐʵÊýx ºã³ÉÁ¢£¬ÔòmµÄÈ¡Öµ·¶Î§Îª(-£¬5].
½â·¨¶þ£º
£¨¢ñ£©Í¬½â·¨Ò»¡£
£¨¢ò£©µ±a=2ʱ£¬f(x)=¨Ox-2¨O.Éèg(x)=f(x)+f(x+5).
ÓɨOx-2¨O+¨Ox+3¨O¡Ý¨O(x-2)-(x+3)¨O="5" £¨µ±ÇÒ½öµ±-3x2ʱµÈºÅ³ÉÁ¢£©µÃ£¬g(x)µÄ×îСֵΪ5.
´Ó¶ø£¬Èôf(x)+f(x+5) ¡Ým ¼´ g(x) ¡Ým¶ÔÒ»ÇÐʵÊýxºã³ÉÁ¢£¬ÔòmµÄÈ¡Öµ·¶Î§Îª(-£¬5].
ÂÔ
Á·Ï°²áϵÁдð°¸
Ïà¹ØÌâÄ¿