题目内容

动点与定点的距离和它到直线的距离之比是常数,记点的轨迹为曲线.
(I)求曲线的方程;
(II)设直线与曲线交于两点,为坐标原点,求面积的最大值.

(I);(II)

解析试题分析:(I)找出题中的相等关系,列出化简即得曲线的方程;(II)先用弦长公式得,由点到直线距离公式得的高,列出面积表达式,最后选择合适的方法求面积的最大值.
试题解析:(I)设是点到直线的距离,根据题意,点的轨迹就是集合
  
由此得       
将上式两边平方,并化简得

所以曲线的方程为  
(II)由
.

.  
于是
   
又原点到直线的距离, 
所以(当时取等号)
所以面积的最大值为
考点:1、曲线方程求法;2、直线与圆锥曲线位置关系;3、解析几何最值问题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网