题目内容

精英家教网已知直四棱柱ABCD-A′B′C′D′,四边形ABCD为正方形,AA′=2AB=2,E为棱CC′的中点.
(Ⅰ)求证:A′E⊥平面BDE;
(Ⅱ)设F为AD中点,G为棱BB′上一点,且BG=
14
BB′
,求证:FG∥平面BDE;
(Ⅲ)在(Ⅱ)的条件下求二面角G-DE-B的余弦值.
分析:(Ⅰ)由直四棱柱的结构特征,且底面四边形ABCD为正方形,我们可得BD⊥AC,BD⊥AA′,我们结合线面垂直的判定定理可得BD⊥面ACEA′,进而BD⊥A′E,再由AA′=2AB=2,由勾股定理可得A′E⊥BE,再由线面垂直的判定定理,即可得到A′E⊥平面BDE;
(Ⅱ)以D为原点,DA为x 轴,DC 为y 轴,DD′为z轴,建立空间直角坐标系,分别求出直线FG的方向向量及平面BDE的法向量,根据两个向量的数量积为0,得到两个向量垂直,进而得到FG∥平面BDE;
(Ⅲ)结合(Ⅱ)中结合,再由出平面GDE的法向量,代入向量夹角公式,即可求出二面角G-DE-B的余弦值.
解答:精英家教网证明:(Ⅰ)∵四棱柱为直四棱柱,
∴BD⊥AC,BD⊥AA′,AC∩AA′=A,
∴BD⊥面ACEA′.
∵A′E?面ACEA′,∴BD⊥A′E.
A′B=
22+12
=
5
BE=
12+12
=
2
A′E=
12+12+12
=
3
,∴A′B2=BE2+A′E2.∴A′E⊥BE.
又∵BD∩BE=B,∴A′E⊥面BDE.(4分)

解:(Ⅱ)以D为原点,DA为x 轴,DC为y 轴,DD′为z轴,建立空间直角坐标系.
∴A′(1,0,2),E(0,1,1),F(
1
2
,0,0)
G(1,1,
1
2
)

∵由(Ⅰ)知:
A′E
=(-1,1,-1)
为面BDE的法向量,
FG
=(
1
2
,1,
1
2
)
,(6分)
FG
A′E
=-1×
1
2
+1×1+(-1)×
1
2
=0
.∴
FG
A′E

又∵FG?面BDE,∴FG∥面BDE.(8分)
解:(Ⅲ)设二面角G-DE-B的大小为θ,
平面DEG 的法向量为
n
=(x,y,z)
,则
DE
=(0,1,1)
DG
=(1,1,
1
2
)

n
DE
=0×x+1×y+1×z=0
,即y+z=0,
n
DG
=1×x+1×y+
1
2
×z=0
,即x+y+
z
2
=0

令x=1,解得:y=-2,z=2,∴
n
=(1,-2,2)
.(12分)
cosθ=
n
A′E
|
n
|•|
A′E
|
=
(-1)×1+1×(-2)+(-1)×2
3•
3
=-
5
3
9

∴二面角G-DE-B的余弦值为
5
3
9
.(14分)
点评:本题考查的知识点是二面角的平面角及求示,直线与平面平行的判定,直线与平面垂直的判定,其中(Ⅰ)的关键是熟练掌握直线与平面垂直的判定及性质定理,(Ⅱ),(Ⅲ)的关键是建立空间坐标系,将空间中直线与平面位置关系转化为向量夹角问题.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网