题目内容
1.已知集合A={x|x+2≥0,x∈R},集合$B=\left\{{x|\frac{x-1}{x+1}≥2}\right\}$.(1)求集合A∩B,A∪B;
(2)求集合(∁uA)∩B.
分析 (1)由已知集合A,求出A=[-2,+∞),然后解分式不等式求出集合B=[-3,-1),则集合A∩B,A∪B的答案可求;
(2)由集合A,求出∁uA,则集合(∁uA)∩B的答案可求.
解答 解:(1)A={x|x+2≥0,x∈R}=[-2,+∞),
由$\frac{x-1}{x+1}≥2$,得$\frac{x-1}{x+1}-2≥0$,即$\frac{-x-3}{x+1}≥0$.
解得:-3≤x<-1.
∴B=[-3,-1),
则A∩B=[-2,-1),A∪B=[-3,+∞);
(2)∵∁uA=(-∞,-2),
∴(CuA)∩B=[-3,-2).
点评 本题考查了交、并、补集的混合运算,考查了分式不等式的解法,是基础题.
练习册系列答案
相关题目
12.定义在D上的函数f(x)若同时满足:①存在M>0,使得对任意的x1,x2∈D,都有|f(x1)-f(x2)|<M;②f(x)的图象存在对称中心.则称f(x)为“P-函数”.
已知函数f1(x)=$\frac{{2}^{x}-1}{{2}^{x}+1}$和f2(x)=lg($\sqrt{{x}^{2}+1}$-x),则以下结论一定正确的是( )
已知函数f1(x)=$\frac{{2}^{x}-1}{{2}^{x}+1}$和f2(x)=lg($\sqrt{{x}^{2}+1}$-x),则以下结论一定正确的是( )
| A. | f1(x)和 f2(x)都是P-函数 | B. | f1(x)是P-函数,f2(x)不是P-函数 | ||
| C. | f1(x)不是P-函数,f2(x)是P-函数 | D. | f1(x)和 f2(x)都不是P-函数 |
9.下列各组函数中,表示同一函数的是( )
| A. | f(x)=2x-1•2x+1,g(x)=4x | B. | $f(x)=\sqrt{x^2},g(x)={({\sqrt{x}})^2}$ | ||
| C. | $f(x)=\frac{{{x^2}-2}}{{x-\sqrt{2}}},g(x)=x+\sqrt{2}$ | D. | $f(x)=\sqrt{x+1}•\sqrt{x-1},g(x)=\sqrt{{x^2}-1}$ |
6.若变量y与x之间的相关系数r=-0.9362,查表得到相关系数临界值r0.05=0.8013,则变量y与x之间( )
| A. | 不具有线性相关关系 | B. | 具有线性相关关系 | ||
| C. | 它们的线性关系还要进一步确定 | D. | 不确定 |
13.下列函数中,满足“f(x+y)=f(x)f(y)”的单调递增函数是( )
| A. | f(x)=x${\;}^{\frac{1}{2}}$ | B. | f(x)=3x | C. | f(x)=($\frac{1}{2}$)x | D. | f(x)=log2x |
10.若0<x<y,则下列各式正确的是( )
| A. | x3<y3 | B. | log${\;}_{\frac{1}{3}}$x<log${\;}_{\frac{1}{3}}$y | ||
| C. | ($\frac{1}{3}$)x$<(\frac{1}{3})^{y}$ | D. | $\frac{3}{x}<\frac{3}{y}$ |