题目内容

1.已知集合A={x|x+2≥0,x∈R},集合$B=\left\{{x|\frac{x-1}{x+1}≥2}\right\}$.
(1)求集合A∩B,A∪B;
(2)求集合(∁uA)∩B.

分析 (1)由已知集合A,求出A=[-2,+∞),然后解分式不等式求出集合B=[-3,-1),则集合A∩B,A∪B的答案可求;
(2)由集合A,求出∁uA,则集合(∁uA)∩B的答案可求.

解答 解:(1)A={x|x+2≥0,x∈R}=[-2,+∞),
由$\frac{x-1}{x+1}≥2$,得$\frac{x-1}{x+1}-2≥0$,即$\frac{-x-3}{x+1}≥0$.
解得:-3≤x<-1.
∴B=[-3,-1),
则A∩B=[-2,-1),A∪B=[-3,+∞);
(2)∵∁uA=(-∞,-2),
∴(CuA)∩B=[-3,-2).

点评 本题考查了交、并、补集的混合运算,考查了分式不等式的解法,是基础题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网