题目内容
(2013•长春一模)在正项等比数列{an}中,已知a1a2a3=4,a4a5a6=12,an-1anan+1=324,则n=( )
分析:正项等比数列{an}中,由a1a2a3=4,a4a5a6=12,知a23=4,a53=12,a83=36,a113=108,a143=324,再由an-1anan+1=an3=324,能求出n.
解答:解:正项等比数列{an}中,
∵a1a2a3=4,a4a5a6=12,
∴a23=4,a53=12,a83=36,a113=108,a143=324,
∵an-1anan+1=an3=324,
∴n=14.
故选C.
∵a1a2a3=4,a4a5a6=12,
∴a23=4,a53=12,a83=36,a113=108,a143=324,
∵an-1anan+1=an3=324,
∴n=14.
故选C.
点评:本题考查等比数列的通项公式的应用,是基础题.解题时要认真审题,仔细解答.
练习册系列答案
相关题目