题目内容

求Sn=1×2+2×3+3×4+…+n(n+1)(n∈N*)可用如下方法:
1×2=
1
3
(1×2×3-0×1×2)
2×3=
1
3
(2×3×4-1×2×3)
3×4=
1
3
(3×4×5-2×3×4)
n(n+1)=
1
3
[n(n+1)(n+2)-(n-1)n(n+1)]

将以上各式相加,得Sn=
1
3
n(n+1)(n+2),仿此方法,求Sn=1×2×3+2×3×4+…+n(n+1)(n+2)(n∈N*).
分析:类比已知,1×2×3对应的系数应为
1
4
,括号里应有1×2×3×4,与0×1×2×3的差式,依此类推.再各式相加.
解答:解:
1×2×3=
1
4
(1×2×3×4-0×1×2×3)
2×3×4=
1
4
(2×3×4×5-1×2×3×4)
3×4×5=
1
4
(3×4×5×6-2×3×4×5)
n(n+1)(n+2)=
1
4
[n(n+1)(n+2)(n+3)-(n-1)n(n+1)(n+2)]

------------------------------(9分)
将以上各式相加得Sn=
1
4
n(n+1)(n+2)(n+3)
---------(15分)
点评:本题考查类比推理,本题要确定好前面的系数,以及后面项的因式构成.属于中档题.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网