题目内容
在直角坐标系中,射线OA: x-y=0(x≥0),
OB: x+2y=0(x≥0),过点P(1,0)作直线分别交射线OA、OB于A、B两点.
(1)当AB中点为P时,求直线AB的方程;
(2)当AB中点在直线
上时,求直线AB的方程.
OB: x+2y=0(x≥0),过点P(1,0)作直线分别交射线OA、OB于A、B两点.
(1)当AB中点为P时,求直线AB的方程;
(2)当AB中点在直线
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824014110293542.png)
(1)
;(2)![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824014110355629.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824014110324587.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824014110355629.png)
试题分析:(1)因为
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824014110371423.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824014110386806.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824014110418875.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824014110433831.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824014110464491.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824014110480396.png)
所以有
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/201408240141105111058.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824014110527930.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824014110558971.png)
∴
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/201408240141105741065.png)
所以直线AB的方程为
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824014110605678.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824014110324587.png)
(2)①当直线
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824014110480396.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824014110480396.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824014110683323.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824014110371423.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824014110730816.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824014110480396.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824014110761475.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824014110293542.png)
即
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824014110480396.png)
②当直线
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824014110480396.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824014110839312.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824014110870418.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824014110886392.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824014110480396.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824014110917619.png)
分别联立
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824014110932953.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/201408240141109641002.png)
可求得
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824014110371423.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824014110995730.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824014111026827.png)
所以
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824014110480396.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/201408240141110571023.png)
又
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824014110480396.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824014110293542.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/201408240141111041145.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824014111135494.png)
所以直线
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824014110480396.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824014111166722.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824014110355629.png)
点评:求直线方程的一般方法
(1)直接法:直接选用直线方程的其中一种形式,写出适当的直线方程;
(2)待定系数法:先由直线满足的一个条件设出直线方程,方程中含有一个待定系数,再由题目中给出的另一条件求出待定系数,最后将求得的系数代入所设方程,即得所求直线方程。简而言之:设方程、求系数、代入。
![](http://thumb.zyjl.cn/images/loading.gif)
练习册系列答案
相关题目