题目内容

设f(x)=
x2,x∈[0,1]
2-x,x∈(1,2]
,函数图象与x轴围成封闭区域的面积为(  )
A、
3
4
B、
4
5
C、
5
6
D、
6
7
分析:利用坐标系中作出函数图象的形状,通过定积分的公式,分别对两部分用定积分求出其面积,再把它们相加,即可求出围成的封闭区域曲边图形的面积.
解答:解:根据题意作出函数的图象:
精英家教网
根据定积分,得所围成的封闭区域的面积S=
1
0
x2dx+∫
 
2
1
-(2-x)dx=
1
3
+(2-
3
2
) =
5
6

故选C
点评:本题考查分段函数的图象和定积分的运用,考查积分与曲边图形面积的关系,属于中档题.解题关键是找出被积函数的原函数,注意运算的准确性.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网