题目内容
对于数列{an},规定数列{△an}为数列{an}的一阶差分数列,其中△an=an+1-an(n∈N*);一般地,规定
为{an}的k阶差分数列,其中![](http://thumb.zyjl.cn/pic1/upload/papers/g02/20101215/201012151628259061329.gif)
,且
。
(1)![](http://thumb.zyjl.cn/pic1/upload/papers/g02/20101215/201012151629267811848.gif)
(2)若数列
的首项
,且满足
,求数列
及
的通项公式;
(3)在(2)的条件下,判断
是否存在最小值,若存在求出其最小值,若不存在说明理由。
![](http://thumb.zyjl.cn/pic1/upload/papers/g02/20120503/20120503171314520933.gif)
![](http://thumb.zyjl.cn/pic1/upload/papers/g02/20101215/201012151628259061329.gif)
![](http://thumb.zyjl.cn/pic1/upload/papers/g02/20101215/201012151628319841113.gif)
![](http://thumb.zyjl.cn/pic1/upload/papers/g02/20101215/20101215162839375995.gif)
(1)
![](http://thumb.zyjl.cn/pic1/upload/papers/g02/20101215/201012151629267811848.gif)
(2)若数列
![](http://thumb.zyjl.cn/pic1/upload/papers/g02/20101215/20101215163021781900.gif)
![](http://thumb.zyjl.cn/pic1/upload/papers/g02/20101215/20101215163025609928.gif)
![](http://thumb.zyjl.cn/pic1/upload/papers/g02/20101215/201012151630302341196.gif)
![](http://thumb.zyjl.cn/pic1/upload/papers/g02/20101215/201012151630407811052.gif)
![](http://thumb.zyjl.cn/pic1/upload/papers/g02/20101215/20101215163044921900.gif)
![](http://thumb.zyjl.cn/pic1/upload/papers/g02/20101215/20101215163115218862.gif)
解:(1)依题意,
,
∴
,
∴
,
∴
。
(2)![](http://thumb.zyjl.cn/pic1/upload/papers/g02/20101215/201012151633278431445.gif)
∴![](http://thumb.zyjl.cn/pic1/upload/papers/g02/20101215/201012151633435151198.gif)
∴![](http://thumb.zyjl.cn/pic1/upload/papers/g02/20101215/201012151634019841016.gif)
∴
,
![](http://thumb.zyjl.cn/pic1/upload/papers/g02/20101215/20101215163500906975.gif)
![](http://thumb.zyjl.cn/pic1/upload/papers/g02/20101215/201012151635059371705.gif)
,
∴
,
,
∴
。
(3)∵
,
令
,则
,
当![](http://thumb.zyjl.cn/pic1/upload/papers/g02/20101215/201012151637245001395.gif)
而
,
。
![](http://thumb.zyjl.cn/pic1/upload/papers/g02/20101215/20101215163146312997.gif)
∴
![](http://thumb.zyjl.cn/pic1/upload/papers/g02/20101215/201012151632125461489.gif)
∴
![](http://thumb.zyjl.cn/pic1/upload/papers/g02/20101215/20101215163235890995.gif)
∴
![](http://thumb.zyjl.cn/pic1/upload/papers/g02/20101215/201012151632574681389.gif)
(2)
![](http://thumb.zyjl.cn/pic1/upload/papers/g02/20101215/201012151633278431445.gif)
∴
![](http://thumb.zyjl.cn/pic1/upload/papers/g02/20101215/201012151633435151198.gif)
∴
![](http://thumb.zyjl.cn/pic1/upload/papers/g02/20101215/201012151634019841016.gif)
∴
![](http://thumb.zyjl.cn/pic1/upload/papers/g02/20101215/201012151634183121070.gif)
![](http://thumb.zyjl.cn/pic1/upload/papers/g02/20101215/20101215163500906975.gif)
![](http://thumb.zyjl.cn/pic1/upload/papers/g02/20101215/201012151635059371705.gif)
![](http://thumb.zyjl.cn/pic1/upload/papers/g02/20101215/201012151635132501490.gif)
∴
![](http://thumb.zyjl.cn/pic1/upload/papers/g02/20101215/201012151635362031187.gif)
![](http://thumb.zyjl.cn/pic1/upload/papers/g02/20101215/201012151635525151191.gif)
∴
![](http://thumb.zyjl.cn/pic1/upload/papers/g02/20101215/201012151636117811191.gif)
(3)∵
![](http://thumb.zyjl.cn/pic1/upload/papers/g02/20101215/201012151636251401219.gif)
令
![](http://thumb.zyjl.cn/pic1/upload/papers/g02/20101215/20101215163635156912.gif)
![](http://thumb.zyjl.cn/pic1/upload/papers/g02/20101215/201012151636423281315.gif)
![](http://thumb.zyjl.cn/pic1/upload/papers/g02/20101215/201012151637072341464.gif)
![](http://thumb.zyjl.cn/pic1/upload/papers/g02/20101215/201012151637245001395.gif)
而
![](http://thumb.zyjl.cn/pic1/upload/papers/g02/20101215/201012151637324681139.gif)
![](http://thumb.zyjl.cn/pic1/upload/papers/g02/20101215/201012151637524531427.gif)
![](http://thumb.zyjl.cn/images/loading.gif)
练习册系列答案
相关题目