题目内容

【题目】已知定义在(0,+∞)的函数f(x),其导函数为f′(x),满足:f(x)>0且 总成立,则下列不等式成立的是(
A.e2e+3f(e)<eπ3f(π)
B.e2e+3f(π)>eπ3f(e)
C.e2e+3f(π)<eπ3f(e)
D.e2e+3f(e)>eπ3f(π)

【答案】A
【解析】解:∵f(x)>0且 总成立,∴(2x+3)f(x)+xf′(x)>0. 令g(x)=e2xx3f(x),g′(x)=)=e2xx2[(2x+3)f(x)+xf′(x)]>0,
∴g(x)=e2xx3f(x)在(0,+∞)上单调递增,∴g(e)<g(π),
∴e2e+3f(e)<eπ3f(π),故选:A.
【考点精析】本题主要考查了利用导数研究函数的单调性的相关知识点,需要掌握一般的,函数的单调性与其导数的正负有如下关系: 在某个区间内,(1)如果,那么函数在这个区间单调递增;(2)如果,那么函数在这个区间单调递减才能正确解答此题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网