题目内容
已知O为△ABC所在平面内一点,满足|
|2+|
|2=|
|2+|
|2=|
|2+|
|2,则点O是△ABC的( )
OA |
BC |
OB |
CA |
OC |
AB |
A.外心 | B.内心 | C.垂心 | D.重心 |
设
=
,
=
,
=
,则
=
-
,
=
-
,
=
-
.
由题可知,|
|2+|
|2=|
|2+|
|2=|
|2+|
|2,
∴|
|2+|
-
|2=|
|2+|
-
|2,化简可得
•
=
•
,即(
-
)•
=0,
∴
•
=0,∴
⊥
,即OC⊥AB.
同理可得OB⊥AC,OA⊥BC.
∴O是△ABC的垂心.
故选C.
OA |
a |
OB |
b |
OC |
c |
BC |
c |
b |
CA |
a |
c |
AB |
b |
a |
由题可知,|
OA |
BC |
OB |
CA |
OC |
AB |
∴|
a |
c |
b |
b |
a |
c |
c |
b |
a |
c |
b |
a |
c |
∴
OC |
AB |
AB |
OC |
同理可得OB⊥AC,OA⊥BC.
∴O是△ABC的垂心.
故选C.
![](http://thumb.zyjl.cn/images/loading.gif)
练习册系列答案
相关题目
已知O为△ABC所在平面内一点,满足|
|2+|
|2=|
|2+|
|2=|
|2+|
|2,则点O是△ABC的( )
OA |
BC |
OB |
CA |
OC |
AB |
A、外心 | B、内心 | C、垂心 | D、重心 |