题目内容

(12分)如图所示,在四棱锥S-ABCD中,侧棱SA=SB=SC=SD,低面ABCD是正方形,AC与交于点O,

   (1)求证:AC⊥平面SBD;

   (2)当点P在线段MN上移动时,试判断EP与AC的位置关系,并证明你的结论。

解析:(1)低面ABCD是正方形,O为中心,AC⊥BD

      又SA=SC,AC⊥SO,又SOBD=0,AC⊥平面SBD-----------------(6分)

     (2)连接

      

      

       又由(1)知,AC⊥BD

       且AC⊥平面SBD,

       所以,AC⊥SB---------------(8分)

       ,且EMNE=E

       ⊥平面EMN-------------(10分)

       因此,当P点在线段MN上移动时,总有AC⊥EP-----(12分)
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网