题目内容

设数列{an}和{bn}满足:a1=b1=6,a2=b2=4,a3=b3=3,且数列{an+1-an}(nN*)是等差数列,数列{bn-2}(nN*)是等比数列.

(1)求列数{an}和{bn}的通项公式.

(2)是否存在kN*,使ak-bk∈(0,)?若存在,求出k;若不存在,请说明理由.

解:(1)由已知a2-a1=-2,a3-a2=-1,d=-1-(-2)=1,?

an+1-an=(a2-a1)+(n-1)×1=n-3.                                                                       ?

an=a1+(a2-a1)+(a3-a2)+…+(an-an-1)?

=6+(-2)+(-1)+0+1+2+…+(n-4)?

=.                                                                                                      ?

由已知b1-2=4,b2-2=2,即q==,?

bn-2=(b1-2)·()n-1=4·()n-1=8·()n.                                                            ?

bn=2+8·()n.                                                                                                      ?

(2)设f(k)=ak-bk=k2-k-8·()k+7.?

k≥4时, k2-kk的增函数;-8·()k也是k的增函数.?

f(4)= ,∴k≥4时,f(k)≥.                                                                           ?

f(1)=f(2)=f(3)=0,∴不存在k,使f(k)∈(0,).

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网