题目内容
12.已知点Pn(an,bn)(n∈N*)在直线l:y=3x+1上,P1是直线l与y轴的交点,数列{an}是公差为1的等差数列.(1)求数列{an},{bn}的通项公式;
(2)求证:$\frac{1}{|{P}_{1}{P}_{2}{|}^{2}}$+$\frac{1}{|{P}_{1}{P}_{3}{|}^{2}}$+…+$\frac{1}{|{P}_{1}{P}_{n+1}{|}^{2}}$<$\frac{1}{6}$.
分析 (1)点Pn(an,bn)(n∈N*)在直线l:y=3x+1上,可得bn=3an+1,直线l与y轴的交点为(0,1),再利用等差数列的通项公式即可得出.
(2)由P1(0,1),Pn(n-1,3n-2),可得Pn+1(n,3n+1).于是$|{P}_{1}{P}_{n+1}{|}^{2}$=n2+(3n)2=10n2,可得$\frac{1}{|{P}_{1}{P}_{n+1}{|}^{2}}$=$\frac{1}{10{n}^{2}}$<$\frac{1}{10}•\frac{1}{{n}^{2}-\frac{1}{4}}$=$\frac{1}{5}(\frac{1}{2n-1}-\frac{1}{2n+1})$.
再利用“裂项求和”求出即可证明.
解答 (1)解:∵点Pn(an,bn)(n∈N*)在直线l:y=3x+1上,
∴bn=3an+1,直线l与y轴的交点为(0,1),
∴a1=0,b1=1.
∵数列{an}是公差为1的等差数列,
∴an=n-1.
∴bn=3(n-1)+1=3n-2.
∴数列{an},{bn}的通项公式分别为:an=n-1,bn=3n-2.
(2)证明:∵P1(0,1),Pn(n-1,3n-2),
∴Pn+1(n,3n+1).
∴$|{P}_{1}{P}_{n+1}{|}^{2}$=n2+(3n)2=10n2,
∴$\frac{1}{|{P}_{1}{P}_{n+1}{|}^{2}}$=$\frac{1}{10{n}^{2}}$<$\frac{1}{10}•\frac{1}{{n}^{2}-\frac{1}{4}}$=$\frac{1}{5}(\frac{1}{2n-1}-\frac{1}{2n+1})$.
∴当n≥2时,$\frac{1}{|{P}_{1}{P}_{2}{|}^{2}}$+$\frac{1}{|{P}_{1}{P}_{3}{|}^{2}}$+…+$\frac{1}{|{P}_{1}{P}_{n+1}{|}^{2}}$<$\frac{1}{10}$+$\frac{1}{5}[(\frac{1}{3}-\frac{1}{5})+(\frac{1}{5}-\frac{1}{7})+$…+$(\frac{1}{2n-1}-\frac{1}{2n+1})]$=$\frac{1}{10}+\frac{1}{5}(\frac{1}{3}-\frac{1}{2n+1})$$<\frac{1}{10}+\frac{1}{15}$$<\frac{1}{6}$..
又当n=1时,$\frac{1}{|{P}_{1}{P}_{2}{|}^{2}}$=$\frac{1}{10}<\frac{1}{6}$.
∴$\frac{1}{|{P}_{1}{P}_{2}{|}^{2}}$+$\frac{1}{|{P}_{1}{P}_{3}{|}^{2}}$+…+$\frac{1}{|{P}_{1}{P}_{n+1}{|}^{2}}$<$\frac{1}{6}$.
点评 本题考查了等差数列的通项公式、“裂项求和”方法、“放缩法”、不等式的性质,考查了推理能力与计算能力,属于中档题.
A. | 2 | B. | 4 | C. | 2$\sqrt{3}$ | D. | 12 |
A. | $\frac{1}{4}$ | B. | $\frac{1}{2}$ | C. | 2 | D. | 4 |
A. | -1 | B. | 2 | C. | 1 | D. | -1或2 |
A. | -3 | B. | 3 | C. | 3i | D. | -3i |