题目内容

若ξ~N(0,1),且令Φ(x)=P(ξ≤x),则下列等式:
①Φ(-x)=1-Φ(x); 
②P{|ξ|≤x}=1-2Φ(x)(x>0);
③P{|ξ|>x}=2[1-Φ(x)](x>0);
④P(a<ξ<x)=1-Φ(x)-Φ(a)(x>a).
其中正确的有 (  )
分析:根据随机变量ξ服从标准正态分布N(0,1),得到正态曲线关于ξ=0对称,再结合正态分布的密度曲线定义Φ(x)=P(ξ≤x,x>0),由此可解决问题.
解答:精英家教网解:∵随机变量ξ服从标准正态分布N(0,1),
∴正态曲线关于ξ=0对称,
∵Φ(x)=P(ξ≤x,x>0),根据曲线的对称性可得:
①Φ(-x)=1-Φ(x),正确;
②P{|ξ|≤x}=2Φ(x)-1≠1-2Φ(x),错误;
③P{|ξ|>x}=2[1-Φ(x)],正确;
④P(a<ξ<x)=1-Φ(x)-Φ(a)(x>a),错误.
故选B.
点评:本题考查正态分布曲线的特点及曲线所表示的意义,标准正态总体在任一区间(a,b)内取值概率P(a<ξ<b)=∅(b)-∅(a),本题属于基础题.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网