题目内容
【题目】函数y=﹣sin(ωx+φ)(ω>0,φ∈(﹣ , ))的一条对称轴为x= ,一个对称中心为( ,0),在区间[0, ]上单调.
(1)求ω,φ的值;
(2)用描点法作出y=sin(ωx+φ)在[0,π]上的图象.
【答案】
(1)解:由题意得: ,即 ,解得
又ω>0,k∈Z,所以ω=2,
x= 为对称轴,2× +φ=kπ+ ,所以φ=kπ﹣ ,
又φ∈(﹣ , ),
∴φ=﹣
(2)解:由(1)可知f(x)=sin(2x﹣ ),
由x∈[0,π],
所以2x﹣ ∈[﹣ , ],
列表:
2x﹣ | ﹣ | 0 | π | |||
x | 0 | π | ||||
f(x) | ﹣ | 0 | 1 | 0 | ﹣1 |
画图:
【解析】(1)由条件利用三角形函数的周期,对称轴,对称中心,即可ω,φ.(2)用五点法作函数y=Asin(ωx+φ)在一个周期[0,π]上的图象.
练习册系列答案
相关题目
【题目】为了解少年儿童的肥胖是否与常喝碳酸饮料有关,现对100名五年级学生进行了问卷调查,得到如下2×2列联表,平均每天喝500ml以上为常喝,体重超过50kg为肥胖.
不常喝 | 常喝 | 合计 | |
肥胖 | x | y | 50 |
不肥胖 | 40 | 10 | 50 |
合计 | A | B | 100 |
现从这100名儿童中随机抽取1人,抽到不常喝碳酸饮料的学生的概率为
(1)求2×2列联表中的数据x,y,A,B的值;
(2)根据列联表中的数据绘制肥胖率的条形统计图,并判断常喝碳酸饮料是否影响肥胖?
(3)是否有99.9%的把握认为肥胖与常喝碳酸饮料有关?说明你的理由. 附:参考公式:K2= ,其中n=a+b+c+d.
临界值表:
P(K2≥k) | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 |
k | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |