题目内容
已知等差数列{an}和公比为q(q≠1)的正项等比数列{bn}满足a1=b1=a,a3=b3,a7=b5,
(1)求等比数列{bn}的公比q;
(2)记Mn=a1+a2+…+an,Nn=b1+b2+…+bn,试比较M5与N5的大小.
(3)若a=1,设数列cn=a2n+1•b2n+1,求数列{cn}的前n项和Sn.
(1)求等比数列{bn}的公比q;
(2)记Mn=a1+a2+…+an,Nn=b1+b2+…+bn,试比较M5与N5的大小.
(3)若a=1,设数列cn=a2n+1•b2n+1,求数列{cn}的前n项和Sn.
分析:(1)通过a1=b1=a,a3=b3,a7=b5,列出方程,结合正项等比数列{bn},求出等比数列{bn}的公比q;
(2)通过(1)直接求出Mn=a1+a2+…+an,Nn=b1+b2+…+bn,M5与N5即可利用作商法,比较出大小.
(3)a=1,推出数列cn=a2n+1•b2n+1的通项公式,利用错位相减法,直接求出数列{cn}的前n项和Sn.
(2)通过(1)直接求出Mn=a1+a2+…+an,Nn=b1+b2+…+bn,M5与N5即可利用作商法,比较出大小.
(3)a=1,推出数列cn=a2n+1•b2n+1的通项公式,利用错位相减法,直接求出数列{cn}的前n项和Sn.
解答:解:(1)因为a1=b1,a3=b3,a7=b5,
所以,a1+2d=b1q2=aq2
a1+6d=b1q4=aq4,
变形得:a(1-q2)=-2d ①
a(1-q4)=-6d ②
②÷①得,1+q2=3
正项等比数列{bn},
所以q2=2,
即,q=
.
(2)由(1)可知d=
,
M5=
=10a;
N5=
=
=
,
=
=
>1,
M5>N5.
(3)an=a+(n-1)
=
(n+1),bn=a•(
)n-1
由题意若a=1,数列cn=a2n+1•b2n+1=(2n+2)•(
)2n=(n+1)•2n+1,
Sn=2•22+3•23+4•24+…+(n+1)•2n+1…①
2Sn=2•23+3•24+4•25+…+(n+1)•2n+2…②
②-①得Sn=-2•22-3•23-24-…-2n+1+(n+1)•2n+2;
Sn=-4+(n+1)•2n+2-
=-4+(n+1)•2n+2+4(1-2n-1)=(n+1)•2n+2-2n+1.
所以,a1+2d=b1q2=aq2
a1+6d=b1q4=aq4,
变形得:a(1-q2)=-2d ①
a(1-q4)=-6d ②
②÷①得,1+q2=3
正项等比数列{bn},
所以q2=2,
即,q=
2 |
(2)由(1)可知d=
a |
2 |
M5=
5×(a+a+4d) |
2 |
N5=
a(1-(
| ||
1-
|
a((
| ||
|
a(2
| ||
|
M5 |
N5 |
10a | ||||||
|
10(
| ||
2
|
M5>N5.
(3)an=a+(n-1)
a |
2 |
a |
2 |
2 |
由题意若a=1,数列cn=a2n+1•b2n+1=(2n+2)•(
2 |
Sn=2•22+3•23+4•24+…+(n+1)•2n+1…①
2Sn=2•23+3•24+4•25+…+(n+1)•2n+2…②
②-①得Sn=-2•22-3•23-24-…-2n+1+(n+1)•2n+2;
Sn=-4+(n+1)•2n+2-
4(1-2n-1) |
1-2 |
点评:本题是中档题,考查等差数列与等比数列的基本关系式,求解等比,前n项和的求法,错位相减法的应用,考查计算能力.
![](http://thumb.zyjl.cn/images/loading.gif)
练习册系列答案
相关题目