题目内容

函数y=f(x)=x3+ax2+bx+a2,在x=1时,有极值10,则a=______,b=______.
∵函数y=f(x)=x3+ax2+bx+a2
∴f′(x)=3x2+2ax+b,
又x=1时,有极值10,
f′(1)=0
f(1)=10
,即
2a+b+3=0
a2+a+b+1=10
,解得
a=-3
b=3
a=4
b=-11

若a=-3,b=3,f′(x)=3x2-6x+3=3(x-1)2≥0恒成立,y=f(x)在R上单调递增,无极值,故舍去;
若a=4,b=-11,f′(x)=3x2+8x-11=(x-1)(3x+11),经检验满足题意.
故a=4,b=-11.
故答案为:4,-11.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网