题目内容

已知椭圆的左右两焦点分别为是椭圆上一点,且在轴上方,

(1)求椭圆的离心率的取值范围;
(2)当取最大值时,过的圆的截轴的线段长为6,求椭圆的方程;
(3)在(2)的条件下,过椭圆右准线上任一点引圆的两条切线,切点分别为.试探究直线是否过定点?若过定点,请求出该定点;否则,请说明理由.

(1);(2);(3).

解析试题分析:(1)由,,.即可求得的取值范围.
(2)由(1)可得.以及是圆的直径可得.即可求出椭圆的方程.
(3)由(2)可得圆Q的方程.切点M,N所在的圆的方程上任一点坐标为P(x,y).由.即得.则M,N所在的直线方程为.两圆方程对减即可得到.根据过定点的知识即可求出定点.本题涉及的知识点较多,渗透方程的思想,加强对几何图形的关系理解.
试题解析: , ∴
(1),∴,在上单调递减.
时,最小时,最大,∴,∴
(2)当时,,∴,∴
,∴是圆的直径,圆心是的中点,∴在y轴上截得的弦长就是直径,∴=6.又,∴.∴椭圆方程是    10分
(3)由(2)得到,于是圆心,半径为3,圆的方程是.椭圆的右准线方程为,,∵直线AM,AN是圆Q的两条切线,∴切点M,N在以AQ为直径的圆上.设A点坐标为,∴该圆方程为.∴直线MN是两圆的公共弦,两圆方程相减得:,这就是直线MN的方程.该直线化为:
∴直线MN必过定点.                     16分
考点:1.椭圆的离心率.2.椭圆的标准方程.3.两圆的公共线的方程.4.过定点问题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网