题目内容

有这样一道题:“在△ABC中,已知a=
3
2cos2(
A+C
2
)=(
2
-1)cosB
,求角A.”已知该题的答案是A=60°,若横线处的条件为三角形中某一边的长度,则此条件应为
c=
6
+
2
2
c=
6
+
2
2
分析:由已知条件根据倍角公式及诱导公式,可求出B=45°,再由A=60°可得C=75°,进而利用正弦定理可求出b=
2
c=
6
+
2
2
,再由b=
2
时,三角形有两解,可得答案.
解答:解:在△ABC中,A+B+C=π
A+C
2
=
π
2
-
B
2

cos (
A+C
2
)=sin
B
2

2cos2(
A+C
2
)
=1-cosB=(
2
-1)cosB

即cosB=
2
2

B=45°
由A=60°可得C=75°
再由a=
3

可得b=
2
c=
6
+
2
2

又∵b=
2
时,三角形有两解
故答案为:c=
6
+
2
2
点评:本题考查的知识点是解三角形,其中易忽略b=
2
时,三角形有两解,而错解为b=
2
c=
6
+
2
2
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网