题目内容
定义在[0,1]上的函数f(x)满足f(0)=0,f(x)+f(1-x)=1,f(
)=
f(x),且当0≤x1<x2≤1时f(x1)≤f(x2),则f(
)等于( )
x |
5 |
1 |
2 |
1 |
2010 |
分析:可令x=1,由f(0)=0,f(x)+f(1-x)=1,求得f(1)=1,又f(
)=
f(x)⇒f(
)=
;反复利用f(
)=
f(x)⇒f(
)=
f(
)=
①;再令x=
,由f(x)+f(1-x)=1,可求得f(
)=
,同理反复利用f(
)=
f(x)⇒f(
)=
f(
)=
②;又0≤x1<x2≤1时f(x1)≤f(x2),而
<
<
从而可求得f(
)的值.
x |
5 |
1 |
2 |
1 |
5 |
1 |
2 |
x |
5 |
1 |
2 |
1 |
3125 |
1 |
2 |
1 |
625 |
1 |
32 |
1 |
2 |
1 |
2 |
1 |
2 |
x |
5 |
1 |
2 |
1 |
1250 |
1 |
2 |
1 |
250 |
1 |
32 |
1 |
3125 |
1 |
2010 |
1 |
1250 |
1 |
2010 |
解答:解:∵f(0)=0,f(x)+f(1-x)=1,令x=1得:f(1)=1,
又f(
)=
f(x),
∴当x=1时,f(
)=
f(1)=
;
令x=
,由f(
)=
f(x)得:
f(
)=
f(
)=
;
同理可求:f(
)=
f(
)=
;
f(
)=)=
f(
)=
;
f(
)=
f(
)=
①
再令x=
,由f(x)+f(1-x)=1,可求得f(
)=
,
∴f(
)+f(1-
)=1,解得f(
)=
,
令x=
,同理反复利用f(
)=
f(x),
可得f(
)=)=
f(
)=
;
f(
)=
f(
)=
;
…
f(
)=
f(
)=
②
由①②可得:,有f(
)=f(
)=
,
∵0≤x1<x2≤1时f(x1)≤f(x2),而0<
<
<
<1
所以有f(
)≥f(
)=
,
f(
)≤f(
)=
;
故f(
)=
.
故选C.
又f(
x |
5 |
1 |
2 |
∴当x=1时,f(
1 |
5 |
1 |
2 |
1 |
2 |
令x=
1 |
5 |
x |
5 |
1 |
2 |
f(
1 |
25 |
1 |
2 |
1 |
5 |
1 |
4 |
同理可求:f(
1 |
125 |
1 |
2 |
1 |
25 |
1 |
8 |
f(
1 |
625 |
1 |
2 |
1 |
125 |
1 |
16 |
f(
1 |
3125 |
1 |
2 |
1 |
625 |
1 |
32 |
再令x=
1 |
2 |
1 |
2 |
1 |
2 |
∴f(
1 |
2 |
1 |
2 |
1 |
2 |
1 |
2 |
令x=
1 |
2 |
x |
5 |
1 |
2 |
可得f(
1 |
10 |
1 |
2 |
1 |
2 |
1 |
4 |
f(
1 |
50 |
1 |
2 |
1 |
10 |
1 |
8 |
…
f(
1 |
1250 |
1 |
2 |
1 |
250 |
1 |
32 |
由①②可得:,有f(
1 |
1250 |
1 |
3125 |
1 |
32 |
∵0≤x1<x2≤1时f(x1)≤f(x2),而0<
1 |
3125 |
1 |
2010 |
1 |
1250 |
所以有f(
1 |
2010 |
1 |
3125 |
1 |
32 |
f(
1 |
2010 |
1 |
1250 |
1 |
32 |
故f(
1 |
2010 |
1 |
32 |
故选C.
点评:本题考查抽象函数及其应用,难点在于利用f(0)=0,f(x)+f(1-x)=1,两次赋值后都反复应用f(
)=
f(x),分别得到关系式①②,从而使问题解决,属于难题.
x |
5 |
1 |
2 |
练习册系列答案
相关题目