题目内容
已知f(x)=x3():
(1)判断函数的奇偶性;
(2)证明f(x)>0.
已知f(x)=x3-ax在[1,+∞)上是单调增函数,则a的最大值是( )
A.0 B.1
C.2 D.3
已知f(x)=x3+x,若a,b,c∈R,且a+b>0,a+c>0,b+c>0,则f(a)+f(b)+f(c)的值( )
A.一定大于0 B.一定等于0 C.一定小于0 D.正负都有可能
已知f(x)=x3+x(x∈R),
(1)判断f(x)在(-∞,+∞)上的单调性,并证明;
(2)求证:满足f(x)=a(a为常数)的实数x至多只有一个.
已知f(x)=x3+ax2+(a+6)x+1有极大值和极小值,则a的取值范围为( )
A、-1<a<2 B、-3<a<6 C、a<-1或a>2 D、a<-3或a>6