题目内容
已知椭圆E中心在原点O,焦点在x轴上,其离心率e=
,过点C(-1,0)的直线l与椭圆E相交于A、B两点,且满足
=2
.
(Ⅰ)用直线l的斜率k(k≠0)表示△OAB的面积;
(Ⅱ)当△OAB的面积最大时,求椭圆E的方程.
|
AC |
CB |
(Ⅰ)用直线l的斜率k(k≠0)表示△OAB的面积;
(Ⅱ)当△OAB的面积最大时,求椭圆E的方程.
分析:(Ⅰ)设椭圆E的方程为
+
=1(a>b>0),直线的方程为y=k(x+1),由e=
=
可得a,b之间的关系,由
=2
,得(-1-x1,-y1)=2(x2+1,y2),结合二次方程有根及方程的根与系数的关系及S=
|y1-y2|代入可求;
(Ⅱ)由(I)可得S△AOB=
=
,结合基本不等式可求
x2 |
a2 |
y2 |
b2 |
c |
a |
|
AC |
CB |
1 |
2 |
(Ⅱ)由(I)可得S△AOB=
3|k| |
3k2+1 |
3 | ||
3|k|+
|
解答:解:(Ⅰ)设椭圆E的方程为
+
=1(a>b>0),直线的方程为y=k(x+1)
由e=
=
∴a2=3b2
故椭圆方程x2+3y2=3b2 …(1分)
设A(x1,y1)、B(x2,y2)),由
=2
,
得(-1-x1,-y1)=2(x2+1,y2)
可得
…(2分)
由
消去y整理(1+3k2)x2+6k2x+3(k2-b2)=0(3分)
由直线l与椭圆E相交于A(x1,y1),B(x2,y2)两点?
∴
…(4分)
而S△OAB=
|y1-y2|=
|-2y2-y2|=
|y2|=
|k(x2+1)|⑥…(6分)
由①④得:x2+1=-
,代入⑥得:S△OAB=
(k≠0) …(7分)
(Ⅱ)因S△OAB=
=
≤
=
,…(8分)
当且仅当k=±
,S△OAB取得最大值,…(9分)
此时x1+x2=-1,又由①得
=-1
∴x1=1,x2=-2 …(10分)
将x1,x2及k2=
代入⑤得3b2=5,满足△>0 …(11分)
∴椭圆方程为x2+3y2=5 …(12分)
x2 |
a2 |
y2 |
b2 |
由e=
c |
a |
|
故椭圆方程x2+3y2=3b2 …(1分)
设A(x1,y1)、B(x2,y2)),由
AC |
CB |
得(-1-x1,-y1)=2(x2+1,y2)
可得
|
由
|
由直线l与椭圆E相交于A(x1,y1),B(x2,y2)两点?
∴
|
而S△OAB=
1 |
2 |
1 |
2 |
3 |
2 |
3 |
2 |
由①④得:x2+1=-
2 |
3k2+1 |
3|k| |
3k2+1 |
(Ⅱ)因S△OAB=
3|k| |
3k2+1 |
3 | ||
3|k|+
|
3 | ||
2
|
| ||
2 |
当且仅当k=±
| ||
3 |
此时x1+x2=-1,又由①得
x1+2x2 |
3 |
∴x1=1,x2=-2 …(10分)
将x1,x2及k2=
1 |
3 |
∴椭圆方程为x2+3y2=5 …(12分)
点评:本题主要考查了由椭圆的性质求解椭圆的方程,直线与椭圆的相交的位置关系的应用,方程的根与系数的关系的应用,属于综合性试题
练习册系列答案
相关题目