题目内容
7.已知Sn为数列{an}的前n项和,Sn=nan-3n(n-1)(n∈N*),且a2=11.(1)证明:数列{an}是等差数列,并求其前n项和Sn;
(2)设数列{bn}满足bn=$\frac{{a}_{n}+11}{{2}^{n}}$,求数列{bn}的前n项的和Tn.
分析 (1)由已知求出a1=5,(n-1)an-(n-1)an-1=6(n-1),由此能证明数列{an}是首项a1=5,公差为6的等差数列,从而能求出求其前n项和Sn.
(2)由数列{bn}满足bn=$\frac{{a}_{n}+11}{{2}^{n}}$=$\frac{6n+10}{{2}^{n}}$,利用裂项求和法能求出数列{bn}的前n项的和.
解答 (1)证明:∵Sn为数列{an}的前n项和,Sn=nan-3n(n-1)(n∈N*),且a2=11.
∴S2=a1+a2=2a2-3×2(2-1),
解得a1=5,
当n≥2时,Sn-1=(n-1)an-1-3(n-1)(n-2),
由an=Sn-Sn-1,
得an=nan-3n(n-1)-(n-1)an-1-3(n-1)(n-2),
∴(n-1)an-(n-1)an-1=6(n-1),
∴an-an-1=6,n≥2,n∈N*,
∴数列{an}是首项a1=5,公差为6的等差数列,
∴an=a1+6(n-1)=6n-1,
∴${S}_{n}=\frac{n({a}_{1}+{a}_{n})}{2}$=3n2+2n.
(2)解:∵数列{bn}满足bn=$\frac{{a}_{n}+11}{{2}^{n}}$=$\frac{6n+10}{{2}^{n}}$,
∴数列{bn}的前n项的和:
Tn=$16•\frac{1}{2}+22•\frac{1}{{2}^{2}}$+$28•\frac{1}{{2}^{3}}+…+\frac{6n+10}{{2}^{n}}$,①
$\frac{1}{2}{T}_{n}$=$16•\frac{1}{{2}^{2}}+22•\frac{1}{{2}^{3}}$+$28•\frac{1}{{2}^{4}}+…+\frac{6n+10}{{2}^{n+1}}$,②
①-②,得:$\frac{1}{2}{T}_{n}$=8+6($\frac{1}{{2}^{2}}+\frac{1}{{2}^{3}}+…+\frac{1}{{2}^{n}}$)-$\frac{6n+10}{{2}^{n+1}}$
=8+6×$\frac{\frac{1}{4}(1-\frac{1}{{2}^{n-1}})}{1-\frac{1}{2}}$-$\frac{3n+5}{{2}^{n}}$
=11-$\frac{3n+11}{{2}^{n}}$,
∴Tn=22-$\frac{6n+22}{{2}^{n}}$.
点评 本题考查等差数列的证明,考查等差数列的通项公式和前n项和的求法,是中档题,解题时要认真审题,注意错位相减法的合理运用.
A. | $\frac{5π}{6}$ | B. | $\frac{2π}{3}$ | C. | $\frac{π}{3}$ | D. | $\frac{π}{6}$ |
A. | a≤0 | B. | a<-$\frac{3}{2}$或a=0 | C. | a<-$\frac{3}{2}$ | D. | a<0 |