题目内容
【题目】某商场进行有奖促销活动,顾客购物每满500元,可选择返回50元现金或参加一次抽奖,抽奖规则如下:从1个装有6个白球、4个红球的箱子中任摸一球,摸到红球就可获得100元现金奖励,假设顾客抽奖的结果相互独立.
(Ⅰ)若顾客选择参加一次抽奖,求他获得100元现金奖励的概率;
(Ⅱ)某顾客已购物1500元,作为商场经理,是希望顾客直接选择返回150元现金,还是选择参加3次抽奖?说明理由;
(Ⅲ)若顾客参加10次抽奖,则最有可能获得多少现金奖励?
【答案】解:(Ⅰ)因为从装有10个球的箱子中任摸一球的结果共有 种,摸到红球的结果共有 种,
所以顾客参加一次抽奖获得100元现金奖励的概率是 .
(Ⅱ)设X表示顾客在三次抽奖中中奖的次数,
由于顾客每次抽奖的结果是相互独立的,则X﹣B(3,0.4),
所以E(X)=np=3×0.4=1.2.
由于顾客每中奖一次可获得100元现金奖励,因此该顾客在三次抽奖中可获得的奖励金额的
均值为1.2×100=120元.
由于顾客参加三次抽奖获得现金奖励的均值120元小于直接返现的150元,
所以商场经理希望顾客参加抽奖.
(Ⅲ)设顾客参加10次抽奖摸中红球的次数为Y.
由于顾客每次抽奖的结果是相互独立的,则Y﹣B(10,0.4).
于是,恰好k次中奖的概率为 ,k=0,1,…,10.
从而 ,k=1,2,…,10,
当k<4.4时,P(Y=k﹣1)<P(Y=k);
当k>4.4时,P(Y=k﹣1)>P(Y=k),
则P(Y=4)最大.
所以,最有可能获得的现金奖励为4×100=400元.
于是,顾客参加10次抽奖,最有可能获得400元的现金奖励
【解析】(Ⅰ)因为从装有10个球的箱子中任摸一球的结果共有 种,摸到红球的结果共有 种,由此能求出顾客参加一次抽奖获得100元现金奖励的概率.(Ⅱ)设X表示顾客在三次抽奖中中奖的次数,由于顾客每次抽奖的结果是相互独立的,则X﹣B(3,0.4),由此能求出商场经理希望顾客参加抽奖.(Ⅲ)设顾客参加10次抽奖摸中红球的次数为Y.由于顾客每次抽奖的结果是相互独立的,则Y﹣B(10,0.4).恰好k次中奖的概率为 ,k=0,1,…,10.由此能求出顾客参加10次抽奖,最有可能获得400元的现金奖励.